
Nikos Nikolaou

EPSRC Doctoral Prize Fellow, University of Manchester

Boosting for Probability
Estimation & Cost-Sensitive

Learning

Introduction:
Supervised Machine Learning Basics

(Classification)

Classification
Example: Cat vs. Dog classifier

Machine learning basics: training

Features
(e.g. RGB value
of each pixel)

Examples
(Images)

Labels (‘Cat’ or ‘Dog’)

LEARNING
ALGORITHM

Model

TRAINING DATA

Machine learning basics: prediction

Features
(e.g. RGB value
of each pixel)

Examples
(Images)

Labels (‘Cat’ or ‘Dog’)

Model

TEST DATA

Machine learning basics: prediction

‘Cat’Model

‘Dog’Model

The learning algorithm’s job

Many learning algorithms each
with its own assumptions
(statistical, probabilistic,
mathematical, geometrical, …)

Learn a decision
surface that ‘best’
separates classes

Given a set of points in some space belonging to different classes…

In this talk…

LEARNING
ALGORITHM

Model

TRAINING DATA

We focus on BOOSTING, a specific family of learning algorithms
Meta-learning algorithms - can apply to other learning
algorithms improving their performance

More specifically…

BOOSTING in cost-sensitive scenarios

cost of a FP ≠ cost of a FN

Part I:
What is wrong with

cost-sensitive Boosting?

Boosting

Can we turn a weak learner into a strong learner? (Kearns, 1988)

YES! ‘Hypothesis Boosting’ (Schapire, 1990)

Marginally more
accurate than

random
guessing

Arbitrarily
high

accuracy

AdaBoost (Freund & Schapire, 1997)

Gödel Prize 2003
Gradient Boosting (Friedman, 1999; Mason et al., 1999)

Very successful in comparisons, applications & competitions

Rich theoretical depth:

PAC learning, VC theory, margin theory, optimization,
decision theory, game theory, probabilistic modelling,
information theory, dynamical systems, …

Boosting

Ensemble method.

Train models sequentially.

Each model focuses on examples previously misclassified.

Combine by weighted majority vote.

Adaboost (Freund & Schapire 1997)

AdaBoost: training
Construct strong model sequentially by combining multiple
weak models

Each model reweights/resamples the data, emphasizing on the
examples the previous one misclassified – i.e. each model focuses on
correcting the mistakes of the previous one

AdaBoost: predictions
Prediction: weighted majority vote among M weak learners

Majority voting confidence in classifier t

Distribution update

Majority vote on test example x’

AdaBoost: algorithm
Initial

weight
distribution

[Pos & Neg class encoded as +1 & -1 respectively for both predictions ℎ𝑡(𝒙) and labels 𝑦]

How will it work on cost sensitive* problems?

i.e. with differing cost for a False Positive / False Negative …

…does it minimize the expected cost (a.k.a. risk)?

*note: cost-sensitive & imbalanced class learning duality

Adaboost

Cost sensitive Adaboost…

15+ boosting variants
over 20 years

Some re-invented
multiple times

Most proposed as
heuristic modifications
to original AdaBoost

Many treat FP/FN costs
as hyperparameters

A step back… Why is Adaboost interesting?

Functional Gradient Descent (Mason et al., 2000)

Decision Theory (Freund & Schapire, 1997)

Margin Theory (Schapire et al., 1998)

Probabilistic Modelling (Lebanon & Lafferty 2001; Edakunni et al 2011)

So for a cost sensitive boosting algorithm…

Functional Gradient Descent

Decision Theory

Margin Theory

Probabilistic Modelling

“Does the algorithm
follow from each?”

Functional Gradient Descent

Property: FGD-consistency

Are the voting weights and distribution updates
consistent with each other?

(i.e. both derivable by FGD on a given loss)

Step size

Direction in function space

Decision theory

Property: Cost-consistency

Does the algorithm use the above
(Bayes Decision Rule)

to make decisions?

(assuming ‘good’ probability estimates)

Ideally: Assign each example to risk-minimizing class:

>

Predict class 𝑦 = 1 iff

Margin theory

Large margins encourage small generalization error.
Adaboost promotes large margins.

margin

Sign of margin:
encodes correct (>0)
or incorrect (<0)
classification of (x,y)
Magnitude of margin:
encodes confidence
of boosting ensemble
in its prediction

Margin theory – with costs…

Different surrogate losses for each class.

So for a cost sensitive boosting algorithm…

We expect this to be the case. But some algorithms do this…

Property: Asymmetry preservation

Does the loss function preserve the relative
importance of each class, for all margin values?

Probabilistic models

‘AdaBoost does not produce good probability estimates.’
Niculescu-Mizil & Caruana, 2005

‘AdaBoost is successful at [..] classification [..] but not class probabilities.’
Mease et al., 2007

‘This increasing tendency of [the margin] impacts the probability estimates by
causing them to quickly diverge to 0 and 1.’

Mease & Wyner, 2008

Probabilistic models

Adaboost
output
(score)

Empirically
Observed

Probability

Adaboost tends to produce probability
estimates close to 0 or 1.

Adaboost output (score)

Frequency

Why this distortion?

Estimates of form: Estimates of form:

As margin is maximized on
training set, scores will
tend to 0 or 1.

Product of Experts; if one
term close to 0 or 1, it
dominates.

(Niculescu-Mizil & Caruana, 2005) (Friedman, Hastie & Tibshirani, 2000)

Probabilistic Models

Adaboost
output
(score)

Empirically
Observed

Probability

Adaboost tends to produce probability
estimates close to 0 or 1.

Property: Calibrated estimates

Does the algorithm generate “calibrated”
probability estimates?

Adaboost output (score)

Frequency

Does a given algorithm satisfy…

Property: FGD-consistency

Are the steps consistent with each
other?

(i.e. both voting weights and distribution
updates derivable by FGD on same loss)

Property: Cost-consistency

Does the algorithm use the (risk-
minimizing) Bayes Decision Rule

to make decisions?

(assuming ‘good’ probability estimates)

Property: Asymmetry
preservation

Does the loss function preserve the
relative importance of each class, for all

margin values?

Property: Calibrated estimates

Does the algorithm generate
“calibrated”

probability estimates?

The results are in…

All
algorithms

produce
uncalibrated
probability
estimates!

So could we just calibrate these last three? We use “Platt scaling”.

Platt scaling (logistic calibration)

Training: Reserve part of training data (here 50% -more
on this later) to fit a sigmoid to correct the distortion:

Adaboost
output
(score)

Empirically Observed
Probability

Prediction: Apply sigmoid transformation to score
(output of ensemble) to get probability estimate

Experiments

15 algorithms.
18 datasets.
21 degrees of cost imbalance.

AdaMEC, CGAda & AsymAda outperform all others.

Their calibrated versions outperform the uncalibrated ones

Average Brier Score Rank

In summary… All 4 Properties
All except
calibrated

In summary…

“Calibrated-AdaMEC” was one of the top methods.

1. Take original Adaboost.

2. Calibrate it (we use Platt scaling)

3. Shift the decision threshold….

Consistent with all theory perspectives.

No extra hyperparameters added.

No need to retrain if cost ratio changes.

Consistently top (or joint top) in empirical comparisons.

Methods & properties

All
algorithms

produce
uncalibrated
probability
estimates!

So could we just calibrate these last three? We use “Platt scaling”.

Q: What if we calibrate all methods?

A: In theory, …

… calibration improves probability estimates.

… if a method is not cost-sensitive, will not make it.

… if the steps are not consistent, will not make them.

… if class importance is swapped during training, will not correct.

Results

All 4
Properties

All Except
Calibrated

Yes…
Standard
AdaBoost!!!

Methods & properties

All
algorithms

produce
uncalibrated
probability
estimates!

So could we just calibrate these last three? We use “Platt scaling”.

Q: Sensitive to calibration choices?

A: Check it out on your own!

https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial

Results

Isotonic regression > Platt scaling, for larger datasets

Can do better than 50%-50% train-calibration split (problem
dependent; see Part II)

(Calibrated) Real AdaBoost > (Calibrated) Discrete AdaBoost...

In summary…

“Calibrated-AdaMEC” was one of the top methods.

1. Take original Adaboost.

2. Calibrate it (we use Platt scaling)

3. Shift the decision threshold….

Consistent with all theory perspectives.

No extra hyperparameters added.

No need to retrain if cost ratio changes.

Consistently top (or joint top) in empirical comparisons.

Conclusions

We analyzed the cost-sensitive boosting literature

… 15+ variants over 20 years, from 4 different theoretical perspectives

“Cost sensitive” modifications to the original Adaboost are not needed...

… if the scores are properly calibrated,
and the decision threshold is shifted according to the cost matrix.

Relevant publications

• N. Nikolaou, N. Edakunni, M. Kull, P. Flach and G. Brown,
Cost-sensitive Boosting algorithms: Do we really need them?,
Machine Learning Journal, Vol. 104, Issue 2, Sept 2016

• Best Poster Award, INIT/AERFAI summer school in ML 2014

• Plenary Talk ECML 2016 -- 12/129 eligible papers (9.3%)

• Best Paper Award 2016, School of Computer Science, University of Manchester

• N. Nikolaou and G. Brown, Calibrating AdaBoost for Asymmetric Learning, Multiple
Classifier Systems, 2015

• N. Nikolaou, Cost-sensitive Boosting: A Unified Approach, PhD Thesis,
University of Manchester, 2016

• Best Thesis Award 2017, School of Computer Science, University of Manchester

Resources & code

• Easy-to-use but not so flexible ‘Calibrated AdaMEC’
python implementation (scikit-learn style):

https://mloss.org/revision/view/2069/

• i-python tutorial for all this with interactive code for
‘Calibrated AdaMEC’, where every choice can be tweaked:

https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial

https://mloss.org/revision/view/2069/
https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial

Connections to Deep Learning (1)

Both Boosting and Deep Neural Networks (DNNs) exhibit very good generalization…

..despite constructing overparameterized (drawn from a very rich family) models

Too high richness (capacity, complexity, degrees of freedom) of model → overfitting

Overfitting: fitting the training dataset ‘too well’, ‘memorizing it’ rather than ‘learning
from it’, capturing noise as part of the concept to be learned thus failing to generalize
to new data (poor performance on test set)

Connections to Deep Learning (2)

But both Boosting & DNNs can improve fitting the test data even beyond the point
of perfectly fitting the training data!

‘‘Boosting the margin: a new explanation for the effectiveness of voting methods’’, Schapire et al. 1997
‘‘Understanding Deep Learning Requires Rethinking Generalization’’, Zhang et al, 2017
‘‘Opening the Black Box of Deep Neural Networks via Information’’, Shwartz-Ziv & Tishby, 2017

Test

Test
Training

Training

Connections to Deep Learning (3)

The good classification generalization of DNNs has been justified through

• margin maximization:
‘‘Robust Large Margin Deep Neural Networks’’, Sokolic et al., 2017

[Note: As with Boosting]

• properties of (Stochastic) GD:
‘‘A Bayesian Perspective on Generalization and Stochastic Gradient Descent’’, Smith & Le, 2017

‘‘The Implicit Bias of Gradient Descent on Separable Data’’, Soudry et al., 2017

[Note: Boosting also a Gradient Descent process; stochasticity also applied/substituted by other mechanisms]

• information theory:
‘‘Opening the Black Box of Deep Neural Networks via Information’’, Shwartz-Ziv & Tishby, 2017

[Note: We are currently applying similar ideas to justify generalization in Boosting-seems to work!]

Residual Networks (ResNets), a state of the art DNN architecture has been directly
explained through boosting theory
‘‘Learning Deep ResNet Blocks Sequentially using Boosting Theory’’, Huang et al., 2017

Connections to Deep Learning (4)

ResNets also very good classifiers but very poor probability estimators
‘‘On Calibration of Modern Neural Networks’’, Guo et al., 2017

CONJECTURE : Not a coincidence! [direct analogy to boosting]

Similar behaviour in other architectures…
‘‘Understanding Deep Learning Requires Rethinking Generalization’’, Zhang et al, 2017

‘‘Regularizing Neural Networks by Penalizing Confident Output Distributions’’, Pereyra et al., 2017

CONJECTURE: Also not a coincidence! [implicit regularization afforded
by GD optimization ≡ margin maximization: good for generalization
but scores are distorted towards the extremes]

At any rate, when solving probability estimation/cost-sensitive
problems using DNNs you should calibrate their outputs!

Questions?

End of Part I

Part II:
Calibrating Online Boosting

Next Step: Online learning

Examples presented one (or a few) @ a time

Learner makes predictions as examples are received

Each ‘minibatch’ used to update model, then discarded;
constant time & space complexity

Why?
• Data arrive this way (streaming)
• Problem (e.g. data distribution) changes over time
• To speed up learning in big data applications

Online learning

For each 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝑛 do:
1. Receive 𝑛

2. Predict label / class probability of examples in 𝑛

3. Get true label of examples in 𝑛

4. Evaluate learner’s performance on 𝑛

5. Update learner parameters accordingly

Online Boosting (Oza, 2004)

Probability estimates -as in AdaBoost- are uncalibrated:

How to calibrate online Boosting?

Batch Learning: reserve part of the dataset to train
calibrator function (logistic sigmoid, if Platt scaling)

Online learning: cannot do this; on each minibatch we
must decide whether to train ensemble or calibrator

How to make this decision?

Naïve approach

Fixed Policy: calibrate every 𝑵 rounds

How to pick 𝑁?
• Will depend on problem

• Will depend on ensemble hyperparameters

• Will depend on calibrator hyperparameters

• Might change during training…

In batch learning can choose via cross-validation; not here

Still, naïve better than nothing

Results with N = 2 (not necessarily best value):

A more refined approach

• What if we could learn a good sequence of alternating
between actions?

Bandit
Algorithms

Bandit optimization

A set of actions (arms) -on each round we choose one

Each action associated with a reward distribution

Each time an action taken we sample its reward distribution

Sequence of actions that minimize cumulative regret?

Exploration vs. Exploitation

In online calibrated boosting:
Two actions: { train , calibrate }
Reward: Increase in overall model likelihood after action

Thompson sampling

A Bayesian take on bandits for updating reward distribution

Assume rewards are Gaussian; start with Gaussian prior,

then update using self-conjugacy of Gaussian distribution

Take action with highest posterior reward

UCB policies

‘Optimism in the face of uncertainty’

Choose not the action with best expected reward, but that with
highest upper bound on reward

Bounds derived for arbitrary (UCB1, UCB1-Improved) or specific
(KL-UCB) reward distributions

Discounted rewards

‘Forgeting the past’

Weigh past rewards less; protects from non-stationarity

Why non-stationary?
• Data distribution might change…

• …most importantly: reward distributions will change:
if we perform one action many times, the relative reward for
performing the other is expected to have increased

Some initial results

• Uncalibrated

vs. ‘Every 𝑁 policies’ 𝑁 ϵ {2, 4, 6, 8, 10, 12, 14}

vs. UCB1, UCB1-Improved, Gaussian Thompson Sampling

vs. Discounted versions of above

• Initial results:
• calibrating (even naive) > not calibrating
• non-discounted UCB1 variants ≥ best ‘Every N’ policy
• discounted Thompson Sampling ≥ best ‘Every N’ policy
• … plus no need to set 𝑁

Log-loss learning curves (Impr. UCB1)

Log-loss learning curves (Impr. UCB1)

Log-loss learning curves (Impr. UCB1)

Log-loss learning curves (Impr. UCB1)

Some Notes

Results shown for ensembles of M=10 Naïve Bayes weak learners

Similar results for

other bandit policies

other weak learners

regularized weak learners

varying ensemble sizes

presence of inherent non-stationarity

Also beats other Naïve policies (mention)

In summary…

Online Boosting poor probability estimates; some calibration can improve

Learn a good sequence of calibration / training actions using bandits

Online, fast, at least as good as ‘best naïve’ + adaptive to non-stationarity

Easy to adapt to other problems (e.g. cost-sensitive learning)

Robust to ensemble/calibrator hyperparameters

Extensions: e.g. adversarial, contextual, more actions, refine calibration, …

Thank you! Ευχαριστώ!

Questions?

