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Introduction:
Supervised Machine Learning Basics

(Classification)



Classification
Example: Cat vs. Dog classifier



Machine learning basics: training

Features
(e.g. RGB value 
of each pixel)

Examples
(Images)

Labels (‘Cat’ or ‘Dog’)

LEARNING 
ALGORITHM

Model

TRAINING DATA



Machine learning basics: prediction

Features
(e.g. RGB value 
of each pixel)

Examples
(Images)

Labels (‘Cat’ or ‘Dog’)

Model

TEST DATA



Machine learning basics: prediction

‘Cat’Model

‘Dog’Model



The learning algorithm’s job

Many learning algorithms each 
with its own assumptions
(statistical, probabilistic, 
mathematical, geometrical, …)

Learn a decision 
surface that ‘best’ 
separates classes

Given a set of points in some space belonging to different classes…



In this talk…  

LEARNING 
ALGORITHM

Model

TRAINING DATA

We focus on BOOSTING, a specific family of learning algorithms
Meta-learning algorithms - can apply to other learning 
algorithms improving their performance



More specifically… 

BOOSTING in cost-sensitive scenarios

cost of a FP ≠ cost of a FN



Part I:
What is wrong with

cost-sensitive Boosting?



Boosting

Can we turn a weak learner into a strong learner? (Kearns, 1988)

YES! ‘Hypothesis Boosting’ (Schapire, 1990) 

Marginally more  
accurate than 

random 
guessing

Arbitrarily
high

accuracy

AdaBoost (Freund & Schapire, 1997)

Gödel Prize 2003
Gradient Boosting (Friedman, 1999; Mason et al., 1999)



Very successful in comparisons, applications & competitions

Rich theoretical depth:

PAC learning, VC theory, margin theory, optimization,
decision theory, game theory, probabilistic modelling, 
information theory, dynamical systems, …

Boosting



Ensemble method.

Train models sequentially.

Each model focuses on examples previously misclassified.

Combine by weighted majority vote.

Adaboost (Freund & Schapire 1997)



AdaBoost: training
Construct strong model sequentially by combining multiple 
weak models

Each model reweights/resamples the data, emphasizing on the 
examples the previous one misclassified – i.e. each model focuses on 
correcting the mistakes of the previous one



AdaBoost: predictions
Prediction: weighted majority vote among M weak learners



Majority voting confidence in classifier t

Distribution update

Majority vote on test example x’

AdaBoost: algorithm
Initial

weight
distribution

[Pos & Neg class encoded as +1 & -1 respectively for both predictions ℎ𝑡(𝒙) and labels 𝑦]



How will it work on cost sensitive* problems?

i.e. with differing cost for a False Positive / False Negative …

…does it minimize the expected cost (a.k.a. risk)?

*note: cost-sensitive & imbalanced class learning duality

Adaboost



Cost sensitive Adaboost…

15+ boosting variants 
over 20 years

Some re-invented
multiple times

Most proposed as 
heuristic modifications 
to original AdaBoost

Many treat FP/FN costs 
as hyperparameters



A step back… Why is Adaboost interesting?

Functional Gradient Descent (Mason et al., 2000)

Decision Theory (Freund & Schapire, 1997)

Margin Theory (Schapire et al., 1998)

Probabilistic Modelling (Lebanon & Lafferty 2001; Edakunni et al 2011)



So for a cost sensitive boosting algorithm…

Functional Gradient Descent

Decision Theory

Margin Theory

Probabilistic Modelling

“Does the algorithm
follow from each?”



Functional Gradient Descent

Property: FGD-consistency

Are the voting weights and distribution updates 
consistent with each other?

(i.e. both derivable by FGD on a given loss)

Step size

Direction in function space



Decision theory

Property: Cost-consistency

Does the algorithm use the above
(Bayes Decision Rule)

to make decisions? 

(assuming ‘good’ probability estimates)

Ideally: Assign each example to risk-minimizing class:

>

Predict class 𝑦 = 1 iff



Margin theory

Large margins encourage small generalization error.
Adaboost promotes large margins.

margin

Sign of margin:
encodes correct (>0) 
or incorrect (<0)
classification of (x,y)
Magnitude of margin:
encodes confidence 
of boosting ensemble 
in its prediction



Margin theory – with costs…

Different surrogate losses for each class.



So for a cost sensitive boosting algorithm…

We expect this to be the case. But some algorithms do this…

Property: Asymmetry preservation

Does the loss function preserve the relative
importance of each class, for all margin values?



Probabilistic models

‘AdaBoost does not produce good probability estimates.’
Niculescu-Mizil & Caruana, 2005

‘AdaBoost is successful at [..] classification [..] but not class probabilities.’
Mease et al., 2007

‘This increasing tendency of [the margin] impacts the probability estimates by 
causing them to quickly diverge to 0 and 1.’

Mease & Wyner, 2008



Probabilistic models

Adaboost
output
(score)

Empirically 
Observed 

Probability

Adaboost tends to produce probability
estimates close to 0 or 1.

Adaboost output (score)

Frequency



Why this distortion?

Estimates of form: Estimates of form:

As margin is maximized on 
training set, scores will 
tend to 0 or 1.

Product of Experts; if one 
term close to 0 or 1, it 
dominates.

(Niculescu-Mizil & Caruana, 2005) (Friedman, Hastie & Tibshirani, 2000)



Probabilistic Models

Adaboost
output
(score)

Empirically 
Observed 

Probability

Adaboost tends to produce probability
estimates close to 0 or 1.

Property: Calibrated estimates

Does the algorithm generate “calibrated”
probability estimates?

Adaboost output (score)

Frequency



Does a given algorithm satisfy…

Property: FGD-consistency

Are the steps consistent with each 
other?

(i.e. both voting weights and distribution 
updates derivable by FGD on same loss)

Property: Cost-consistency

Does the algorithm use the (risk-
minimizing) Bayes Decision Rule

to make decisions? 

(assuming ‘good’ probability estimates)

Property: Asymmetry 
preservation

Does the loss function preserve the 
relative importance of each class, for all 

margin values?

Property: Calibrated estimates

Does the algorithm generate 
“calibrated”

probability estimates?



The results are in…

All 
algorithms

produce
uncalibrated
probability
estimates!

So could we just calibrate these last three?  We use “Platt scaling”.



Platt scaling (logistic calibration)

Training: Reserve part of training data (here 50% -more 
on this later) to fit a sigmoid to correct the distortion:

Adaboost
output
(score)

Empirically Observed 
Probability

Prediction: Apply sigmoid transformation to score 
(output of ensemble) to get probability estimate



Experiments

15 algorithms.
18 datasets.
21 degrees of cost imbalance.



AdaMEC, CGAda & AsymAda outperform all others.

Their calibrated versions outperform the uncalibrated ones

Average Brier Score Rank

In summary… All 4 Properties
All except 
calibrated



In summary…

“Calibrated-AdaMEC” was one of the top methods.

1. Take original Adaboost.

2. Calibrate it (we use Platt scaling)

3. Shift the decision threshold….

Consistent with all theory perspectives.

No extra hyperparameters added.

No need to retrain if cost ratio changes.

Consistently top (or joint top) in empirical comparisons.



Methods & properties

All 
algorithms

produce
uncalibrated
probability
estimates!

So could we just calibrate these last three? We use “Platt scaling”.



Q: What if we calibrate all methods? 

A: In theory, …

… calibration improves probability estimates.

… if a method is not cost-sensitive, will not make it.

… if the steps are not consistent, will not make them.

… if class importance is swapped during training, will not correct.



Results

All 4 
Properties

All Except 
Calibrated

Yes… 
Standard
AdaBoost!!!



Methods & properties

All 
algorithms

produce
uncalibrated
probability
estimates!

So could we just calibrate these last three?  We use “Platt scaling”.



Q: Sensitive to calibration choices? 

A: Check it out on your own!

https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial



Results

Isotonic regression > Platt scaling, for larger datasets

Can do better than 50%-50% train-calibration split (problem 
dependent; see Part II)

(Calibrated) Real AdaBoost > (Calibrated) Discrete AdaBoost...



In summary…

“Calibrated-AdaMEC” was one of the top methods.

1. Take original Adaboost.

2. Calibrate it (we use Platt scaling)

3. Shift the decision threshold….

Consistent with all theory perspectives.

No extra hyperparameters added.

No need to retrain if cost ratio changes.

Consistently top (or joint top) in empirical comparisons.



Conclusions

We analyzed the cost-sensitive boosting literature

… 15+ variants over 20 years, from 4 different theoretical perspectives

“Cost sensitive” modifications to the original Adaboost are not needed...

… if the scores are properly calibrated,
and the decision threshold is shifted according to the cost matrix.



Relevant publications

• N. Nikolaou, N. Edakunni, M. Kull, P. Flach and G. Brown,
Cost-sensitive Boosting algorithms: Do we really need them?,
Machine Learning Journal, Vol. 104, Issue 2, Sept 2016

• Best Poster Award, INIT/AERFAI summer school in ML 2014

• Plenary Talk ECML 2016 -- 12/129 eligible papers (9.3%)

• Best Paper Award 2016, School of Computer Science, University of Manchester

• N. Nikolaou and G. Brown, Calibrating AdaBoost for Asymmetric Learning, Multiple 
Classifier Systems, 2015 

• N. Nikolaou, Cost-sensitive Boosting: A Unified Approach,  PhD Thesis, 
University of Manchester, 2016

• Best Thesis Award 2017, School of Computer Science, University of Manchester



Resources & code

• Easy-to-use but not so flexible ‘Calibrated AdaMEC’ 
python implementation (scikit-learn style):

https://mloss.org/revision/view/2069/

• i-python tutorial for all this with interactive code for 
‘Calibrated AdaMEC’, where every choice can be tweaked:

https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial

https://mloss.org/revision/view/2069/
https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial


Connections to Deep Learning (1)

Both Boosting and Deep Neural Networks (DNNs) exhibit very good generalization…

..despite constructing overparameterized (drawn from a very rich family) models

Too high richness (capacity, complexity, degrees of freedom) of model → overfitting



Overfitting: fitting the training dataset ‘too well’, ‘memorizing it’ rather than ‘learning 
from it’, capturing noise as part of the concept to be learned thus failing to generalize 
to new data (poor performance on test set)

Connections to Deep Learning (2)

But both Boosting & DNNs can improve fitting the test data even beyond the point 
of perfectly fitting the training data!

‘‘Boosting the margin: a new explanation for the effectiveness of voting methods’’, Schapire et al. 1997
‘‘Understanding Deep Learning Requires Rethinking Generalization’’, Zhang et al, 2017
‘‘Opening the Black Box of Deep Neural Networks via Information’’, Shwartz-Ziv & Tishby, 2017

Test

Test
Training

Training



Connections to Deep Learning (3)

The good classification generalization of DNNs has been justified through

• margin maximization:
‘‘Robust Large Margin Deep Neural Networks’’, Sokolic et al., 2017

[Note: As with Boosting]

• properties of (Stochastic) GD:
‘‘A Bayesian Perspective on Generalization and Stochastic Gradient Descent’’, Smith & Le, 2017

‘‘The Implicit Bias of Gradient Descent on Separable Data’’, Soudry et al., 2017

[Note: Boosting also a Gradient Descent process; stochasticity also applied/substituted by other mechanisms]

• information theory: 
‘‘Opening the Black Box of Deep Neural Networks via Information’’, Shwartz-Ziv & Tishby, 2017

[Note: We are currently applying similar ideas to justify generalization in Boosting-seems to work!]

Residual Networks (ResNets), a state of the art DNN architecture has been directly 
explained through boosting theory 
‘‘Learning Deep ResNet Blocks Sequentially using Boosting Theory’’, Huang et al., 2017



Connections to Deep Learning (4)

ResNets also very good classifiers but very poor probability estimators 
‘‘On Calibration of Modern Neural Networks’’, Guo et al., 2017

CONJECTURE : Not a coincidence! [direct analogy to boosting]

Similar behaviour in other architectures… 
‘‘Understanding Deep Learning Requires Rethinking Generalization’’, Zhang et al, 2017

‘‘Regularizing Neural Networks by Penalizing Confident Output Distributions’’, Pereyra et al., 2017

CONJECTURE: Also not a coincidence! [implicit regularization afforded 
by GD optimization ≡ margin maximization: good for generalization
but scores are distorted towards the extremes]

At any rate, when solving probability estimation/cost-sensitive
problems using DNNs you should calibrate their outputs!



Questions?

End of Part I



Part II:
Calibrating Online Boosting



Next Step: Online learning

Examples presented one (or a few) @ a time

Learner makes predictions as examples are received

Each ‘minibatch’ used to update model, then discarded;
constant time & space complexity

Why?
• Data arrive this way (streaming)
• Problem (e.g. data distribution) changes over time
• To speed up learning in big data applications



Online learning

For each 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝑛 do:
1. Receive 𝑛

2. Predict label / class probability of examples in 𝑛

3. Get true label of examples in 𝑛

4. Evaluate learner’s performance on 𝑛

5. Update learner parameters accordingly



Online Boosting (Oza, 2004)

Probability estimates -as in AdaBoost- are uncalibrated:



How to calibrate online Boosting?

Batch Learning: reserve part of the dataset to train 
calibrator function (logistic sigmoid, if Platt scaling)

Online learning: cannot do this; on each minibatch we 
must decide whether to train ensemble or calibrator

How to make this decision?



Naïve approach

Fixed Policy: calibrate every 𝑵 rounds

How to pick 𝑁? 
• Will depend on problem

• Will depend on ensemble hyperparameters

• Will depend on calibrator hyperparameters

• Might change during training…

In batch learning can choose via cross-validation; not here



Still, naïve better than nothing

Results with N = 2 (not necessarily best value):



A more refined approach

• What if we could learn a good sequence of alternating 
between actions?

Bandit 
Algorithms



Bandit optimization

A set of actions (arms) -on each round we choose one

Each action associated with a reward distribution

Each time an action taken we sample its reward distribution

Sequence of actions that minimize cumulative regret?

Exploration vs. Exploitation

In online calibrated boosting:
Two actions: { train , calibrate }
Reward: Increase in overall model likelihood after action



Thompson sampling

A Bayesian take on bandits for updating reward distribution

Assume rewards are Gaussian; start with Gaussian prior,

then update using self-conjugacy of Gaussian distribution

Take action with highest posterior reward



UCB policies

‘Optimism in the face of uncertainty’

Choose not the action with best expected reward, but that with 
highest upper bound on reward

Bounds derived for arbitrary (UCB1, UCB1-Improved) or specific 
(KL-UCB) reward distributions



Discounted rewards

‘Forgeting the past’

Weigh past rewards less; protects from non-stationarity

Why non-stationary?
• Data distribution might change…

• …most importantly: reward distributions will change: 
if we perform one action many times, the relative reward for 
performing the other is expected to have increased



Some initial results

• Uncalibrated

vs. ‘Every 𝑁 policies’ 𝑁 ϵ {2, 4, 6, 8, 10, 12, 14}

vs. UCB1, UCB1-Improved, Gaussian Thompson Sampling

vs. Discounted versions of above

• Initial results:
• calibrating (even naive) > not calibrating
• non-discounted UCB1 variants ≥ best ‘Every N’ policy
• discounted Thompson Sampling ≥ best ‘Every N’ policy
• … plus no need to set 𝑁



Log-loss learning curves (Impr. UCB1)



Log-loss learning curves (Impr. UCB1)



Log-loss learning curves (Impr. UCB1)



Log-loss learning curves (Impr. UCB1)



Some Notes

Results shown for ensembles of M=10 Naïve Bayes weak learners

Similar results for

other bandit policies

other weak learners

regularized weak learners

varying ensemble sizes

presence of inherent non-stationarity

Also beats other Naïve policies (mention)



In summary…

Online Boosting poor probability estimates; some calibration can improve 

Learn a good sequence of calibration / training actions using bandits

Online, fast, at least as good as ‘best naïve’ + adaptive to non-stationarity

Easy to adapt to other problems (e.g. cost-sensitive learning)

Robust to ensemble/calibrator hyperparameters

Extensions: e.g. adversarial, contextual, more actions, refine calibration, …



Thank you! Ευχαριστώ!

Questions?


