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Asymmetric Learning
Cost-sensitive

different errors have
have different costs

Imbalanced classes
different classes appear
with different frequency

…or both! 



Motivation

I have symptoms of a serious disease…
…so I go to the doctor  for a test

But tests (& doctors) make mistakes…

Binary decision :
Have disease (Positive, ࢟ = ૚)
Don’t have disease (Negative, ࢟ = −૚)



Possible Outcomes

Positive Negative

Positive TP FN

Negative FP TN

Predicted Class

True Class

Two types of misdiagnosis:
FP: don’t have disease but test says I do (BAD)
FN: have disease but test says I don’t (VERY BAD!)



Other Applications



The Cost Matrix
Assign a cost to each type of outcome

Assumes cost depends only on class

must satisfy:  CTP < CFN & CTN < CFP 

Positive Negative

Positive CTP CFN

Negative CFP CTN

Predicted Class

True Class



The Cost Matrix
Most common case:

must satisfy:  0 < CFN & 0 < CFP 

Positive Negative

Positive 0 CFN

Negative CFP 0

Predicted Class

True Class



Solving Cost-Sensitive Learning

1. Change classifier: let it take into account the cost matrix

2. Resample data: create class imbalance matching cost 
imbalance 

3. Get class probability estimates from classifier & assign to class 
that incurs the minimum expected cost



Boosting/AdaBoost Recap

• Ensemble method: sequentially combine multiple weak learners 
to build a strong one

• Weights over examples: on each round increase for previously 
misclassified examples, decrease for correctly classified ones

• Confidence coefficient on each learner, based on its error rate

• Nice theoretical properties, resistant to overfitting, extensively 
studied, successful applications



AdaBoost

Can it handle cost-sensitive problems?

Update examples’ weights

Confidence weighted majority vote

Assign a confidence score
to each weak learner

Start with a uniform weight
distribution over the examples



Asymmetric Boosting Variants

(Joshi et al., 2001)

(Ting, 2000)

(Fan et al., 1999)

(Sun et al., 2005; 2007)

(Viola & Jones, 2001; 2002)

(Ting & Zheng, 1998)
(Ting, 2000)

(Ting, 2000)

(Masnadi-Shirazi & Vasconcelos , 2007; 2011)

(Cohen & Singer, 1999)

Update examples’ weights

Assign a confidence score
to each weak learner

Confidence weighted majority vote

Start with a uniform weight
distribution over the examples

(Landesa-Vázquez & Alba-Castro, 2013;2015a;2015b)



Asymmetric Boosting Variants

AdaMEC

CSB1
CSB2

CSB0 /

AdaC2
AdaC3

AdaCost
AdaC1 / 

AdaCost (β1)
CS - Ada / 

AsymBoost

RareBoost-1
RareBoost-2

SLIPPER

Cost - UBoost
Asym - Ada

CGAda

But needs 
calibration!



Issues with modifying training phase

• No theoretical guarantees of original AdaBoost
– e.g. bounds on generalization error, convergence,

confidence ߙ௧ ∈ ܴା, max num. weak learners ܯ not fixed

• Most heuristic, no decision-theoretic motivation
– ad-hoc changes, not apparent what they achieve

• Need to retrain if skew ratio changes

• Require extra hyperparameters to be set via CV



Boosting as a Product of Experts

AdaBoost:

AdaMEC:

AdaC2:

(Edakunni et al., 2011) 

⁞



• AdaMEC changes prediction rule from weighted majority vote
to minimum expected cost criterion

       

     
• Problem: incorrectly assumes scores are probability estimates…

• …but can correct this via calibration

Issues with modifying prediction rule



• Classify examples
– Is ݔ positive?

• Rank examples
– Is ݔ ‘more positive’ than ݔᇱ?

• Output a score for each example
– ‘How positive’ is ݔ?

• Output a probability estimate for each example
– What is the (estimated) probability that ݔ is positive?

Things classifiers do…

ݔ ᇱݔ



Why estimate probabilities?

• Need probabilities when a cost-sensitive decision needs to be 
made; scores won’t cut it

• Will assign to class that minimizes expected cost
i.e. assign to ݕ = :only if (ݏ݋ܲ) 1 

expected cost of assigning to Neg <  expected cost of assigning to Pos

 
⇔

̂݌ ݕ = 1 ݔ >
ி௉ܥ

ிேܥ + ி௉ܥ



Most classifiers don’t produce probability estimates directly but 
we get them via scores, e.g. decision trees: 

Probability estimation is not easy

+ : 40
- : 60

+ : 30
- : 30

+ : 10
- : 30

+ : 5
- : 25

+ : 25
- : 5

Tree as
constructed
on training 

set

1/41/6 5/6
Score of test example that falls on leaf; 

Should we take this as ̂݌ ̂(+|x)?

Even ‘probabilistic’ 
classifiers can fail to 
produce reliable
probability estimates 
(e.g. Naïve Bayes)

ଵݔ ≥ 2.5 ଵݔ < 2.5

ଶݔ ≥ 0.7 ଶݔ < 0.7



Calibration
• (ݔ)ݏ ∈ [0, 1] : score assigned by classifier to example ݔ

• A classifier is calibrated if
ݕ)̂݌ = → (ݔ|1 s(ݔ), as N → ∞

• Intuitively: consider all examples with 0.7 = (ݔ)ݏ;
70% of these examples should be positives

• Calibration can only improve classification (asymptotically)



Probability estimates of AdaBoost

Score for Boosting: 

Fraction of 
Positives

Score

Boosted trees / stumps: 
sigmoid distortion;  
scores pushed more 
towards 0 or 1 as num.
of boosting rounds 
increases

(Niculescu-Mizil & Caruana, 2006)

∈ [0, 1]



Calibrating AdaBoost: Platt Scaling

• Find ܤ,ܣ for ݕ)̂݌ = 1|x) = ଵ
ଵା௘ಲ ೞ ೣ  శ ಳ , s. t. likelihood of data is 

maximized

• Separate sets for train & calibration

• Motivation: undo sigmoid distortion
                      observed in boosted trees

• Alternative: isotonic regression



Calibrating AdaBoost for asymmetric learning

ݕ)ො݌ ] = (ݔ|1 - ஼ಷು
஼ಷುା஼ಷಿ

 ]



Experimental Design

• AdaC2 vs. CGAda vs. AdaMEC        vs.       Calibrated AdaBoost
                 75% Tr / 25% Te                    50% Tr / 25% Cal / 25% Te

• Weak learner: univariate logistic regression

• 18 datasets

• Evaluation: normalized expected cost  ∈ [0, 1] 

• Various skew ratios: ݖ = ஼ಷು
஼ಷಿା஼ಷು



Ada-Calibrated at least as good as best, especially good on larger datasets  

Empirical Results (1)



Empirical Results (2)

 

Ada-Calibrated at least as good as best (no sig. diff.) for very low /high skew
Nemenyi test at the 0.05 level on the differences



Empirical Results (2)

 

Ada-Calibrated at least as good as best (no sig. diff.) for very low \high skew
Nemenyi test at the 0.05 level on the differences

Ada-Calibrated superior to rest (sig. diff.) for medium skew



Empirical Results (3)



Conclusion

• Calibrating AdaBoost empirically comparable (small data & skew)/
superior (big data / skew) to alternatives published 1998 - 2015

• Conceptual simplicity; no need for new algorithms, or 
hyperparameter setting

• No need to retrain if skew ratio changes in deployment

• Retains theoretical guarantees of AdaBoost & decision theory

• Sound probabilistic / decision-theoretic motivation



Thank you!


