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Classification

Many learning algorithms each 
with its own assumptions
(statistical, probabilistic, 
mathematical, geometrical, …)

…learn a decision 
surface that ‘best’ 
separates classes

Given a set of points in some space belonging to different classes…



Balanced vs. imbalanced class data

Imbalance often significant

Rare class often much more 
important

Standard algorithms & evaluation 
measures treat both classes equally

Imbalanced class learning: set of techniques for amending this



Outcomes of (binary) classification

Truth

Prediction Positive Negative

Positive True Positive
(TP)

False Positive
(FP)

Type I Error

Negative False Negative
(FN)

Type II Error

True Negative
(TN)

Can extend to 
multiclass 
classification…

Convention:
Rare class = Positive

KNOW WHAT YOU WANT YOUR CLASSIFIER TO DO!!!

Can use entries to calculate various evaluation measures

Confusion matrix (contingency table)



I. Defining the problem

• Ensure as many of Pos predictions are indeed Pos

• Ensure as many of Pos examples are predicted as Pos

• Achieve a (weighted) balance of the above

• Achieve good performance across classes

• Minimize expected cost (risk) of classifications

• Maximize TPR for a given maximum FPR

• And more…



Popular evaluation measures

Truth

Prediction Positive Negative

Positive TP FP

Negative FN TN

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝛽 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
1 + 𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝐺 −𝑚𝑒𝑎𝑛 = 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒)

(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)

(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)

% of Pos predictions that are indeed Pos

% of Pos that are indeed predicted as Pos

% of Neg that are indeed predicted as Neg

Geometric mean of Recall & Specificity

Weighted harmonic mean of Precision & Recall
(Common special case: 𝜷 = 𝟏, equal weight)



Other evaluation measures…

Positive Likelihood Ratio

LR+ =
TPR

FPR

Negative Likelihood Ratio

LR− =
FNR

TNR

Diagnostic Odds Ratio

DOR =
LR+

LR−

Dominance
Dominance = 𝑇𝑃𝑅 − 𝑇𝑁𝑅

Index of Balanced Accuracy
𝐼𝐵𝐴𝑎 = (1 + 𝑎 × 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒)ACC
(can also define for other metrics than ACC)

Precision at n
(as precision but for n top-ranked datapoints)



• Classify examples
• Is 𝑥 positive?

• Rank examples
• Is 𝑥 ‘more positive’ than 𝑥′?

• Output a score for each example
• ‘How positive’ is 𝑥?

• Output a probability estimate for each example
• What is the (estimated) probability that 𝑥 is positive?

𝒙 𝒙′

‘Classifiers’ can do many things…



From examples to predictions

Features

Examples

Labels

LEARNING 
ALGORITHM

Classifier

TRAINING DATA

TEST DATA

Examples

Features

Labels



Peeking into the classifier 
Scoring classifiers: quantify ‘how positive’ they deem examples

…then use this number to decide which class to assign them

Classifier

Score 𝑠 𝒙 Decision Rule

𝒙

‘how positive’ is 𝒙 ? given 𝑠 𝒙 , which class 𝑦
should I predict? 

𝑦

Normalized scores 𝑠 𝒙 𝜖[0,1] often treated  as ‘probability estimates’

BUT BEWARE: most models produce biased scores!



A single model, many classifiers

Decreasing threshold 𝑡 → easier to classify examples as Pos

A decision rule looks like:

𝐼𝐹 𝑠 𝒙 > 𝑡 𝑇𝐻𝐸𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑦 = 𝑃𝑜𝑠
𝐼𝐹 𝑠 𝒙 < 𝑡 𝑇𝐻𝐸𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑦 = 𝑁𝑒𝑔

(inversely for increasing 𝑡)



ROC curves & AUC

Decreasing threshold 𝑡 → easier to classify examples as Pos

𝐼𝐹 𝑠 𝒙 > 𝑡 𝑇𝐻𝐸𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑦 = 𝑃𝑜𝑠

Choose 𝑡 offering desired tradeoff

Can choose among multiple algorithms

Can use area under the curve as scalar 
evaluation measure

TPR (↑ or same)
→

FPR (↑ or same)

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃

𝑇𝑁 + 𝐹𝑃



Precision-Recall curves & AUC

Decreasing threshold 𝑡 → easier to classify examples as Pos

𝐼𝐹 𝑠 𝒙 > 𝑡 𝑇𝐻𝐸𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑦 = 𝑃𝑜𝑠

Choose 𝑡 offering desired tradeoff

Can choose among multiple algorithms

Can use area under the curve as scalar 
evaluation measure

Recall (↑ or same)
→

Precision (?)

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑇𝑃

𝑇𝑃 + 𝐹𝑃



Expected cost (a.k.a. risk)

Can treat the rarity of each class as its importance
(i.e. cost of misclassifying):

The goal then is to minimize the expected cost:

Given a new example 𝒙’ this means:

Predict 𝑦 = 𝑃𝑜𝑠 iff

Threshold 𝑡 known, but need probability estimates

𝐶𝐹𝑃 = 1/𝑝𝑁𝐸𝐺

𝐶𝐹𝑁 = 1/𝑝𝑃𝑂𝑆
(estimated on training set) 𝐶𝑇𝑃 = 𝐶𝑇𝑁 = 0

𝑅 = 𝐶𝐹𝑃 x FP + 𝐶𝐹𝑁 x FN 

Ƹ𝑝 𝑦 = 𝑃𝑜𝑠|𝒙’ >
𝐶𝐹𝑃

𝐶𝐹𝑃 + 𝐶𝐹𝑁

(expected FP, FN on test set)



Calibrating probability estimates

Using scores to make probabilistic decisions can be misleading!

Predict 𝑦 = 𝑃𝑜𝑠 iff Ƹ𝑝 𝑦 = 𝑃𝑜𝑠|𝒙′ >
𝐶𝐹𝑃

𝐶𝐹𝑃 + 𝐶𝐹𝑁

Model 
output
(score)

Empirically 
Observed 

Probability

‘‘Cost-sensitive boosting 
algorithms: Do we really 
need them?’’ Nikolaou, 
Edakunni, Kull,  Flach, Brown. 
Machine Learning. 2016 



I. Defining the problem

• Ensure as many of Pos predictions are indeed Pos
Precision (PPV)

• Ensure as many of Pos examples are predicted as Pos
Recall (a.k.a. TPR or Sensitivity)

• Achieve a (weighted) balance of the above
𝑭𝜷-measure; Precision-Recall Curve & AUC; …

• Achieve good performance across classes
G-mean; ROC Curve & AUC; …

• Minimize expected cost (risk) of classifications
Calibrate prob. estimates, then minimize risk; Cost Curves & AUC; …

• Maximize TPR for a given maximum FPR
(Neyman-Pearson detection)

Most sensible for 
‘needle-in-a-haystack’ 
problems



II. Solving the problem

• Do nothing special 

• Balance the dataset
• Oversample minority and/or undersample majority class

• Synthetic examples

• Modify algorithm to favour rare class (cost-sensitive learning)
• Pre-weight examples / modify loss function / shift decision threshold

• Calibrate probability estimates

• Devise a new algorithm specifically for the problem at hand

• Treat as an  anomaly detection problem

• Get more minority class data (might be infeasible / costly)



Imbalance might not be a problem

Data separable (not necessarily ‘linearly’)
by model: no need to do anything!

So, before anything else try out different 
models with different assumptions

Might still want to bias the decision 
boundary in favour of minority class

Problems start when we are forced to misclassify examples!



Balancing the data

6x as frequent as

Each      corresponds to 6 copies 



Create balanced dataset by replicating minority examples

• Cons: variables appear to have lower variance than they do

• Pros: replicates errors -if classifier A commits 1 FN on orig. data & 
minority data replicated x6, A will make 7 FNs on new set

Oversampling minority class



Balance dataset by randomly discarding majority examples

• Cons: variables appear to have higher variance than they do;
‘data is lost’

• Pros: Can alleviate cons with bagging

Undersampling majority class



Bagged undersampling (Blagging)

“Class Imbalance, 
Redux”. Wallace, 
Small, Brodley and 
Trikalinos. IEEE Conf
on Data Mining. 
2011



Nearest neighbor techniques (Tomek)

Neighbourhood-based undersampling rather than random

• Pair examples of opposite classes that are each other’s 
nearest neighbors…

• …then remove the majority instance of the pair

“An Experiment with the 
Edited Nearest-Neighbor
Rule”, Tomek. IEEE 
Trans. on Systems, Man, 
and Cybernetics. 1976



Creating synthetic examples

Lots of variants…

“SMOTE: Synthetic Minority 
Over-sampling Technique”. 
Chawla, Bowyer, Hall, 
Kegelmeyer. Journal of 
Artificial Intelligence 
Research. 2002

• SMOTE: create new 
minority examples by 
interpolating between 
existing ones



Data augmentation

• Often, can create new examples of the minority class by applying 
transformations to existing ones
• e.g. some phenomena in an image can be invariant to affine transformations 

(scaling, rotation, reflection shearing, etc… or combinations thereof)

• Apply transformations that are preserving the class & can be 
encountered in practice (use domain knowledge)

• Some specialized algorithms are already built to ignore certain 
types of transformations, so this won’t help



Take home messages

• Know what you want your classifier to do

• Avoid eval. measures\loss functions with trivial optimizers

• Inspect confusion matrix to spot classifier’s weaknesses

• One model, many classifiers (threshold manipulation)

• When using probability estimates, calibrate them

• When undersampling, couple it with bagging

• When generating synthetic data, do so reasonably (dom. knowledge)

• You have many tools at your disposal, use them all



Further reading

• Tom Fawcet’s blog post on ‘Learning from Imbalanced Classes’: 
https://svds.com/learning-imbalanced-classes/

(Some material from this was used in my talk)

• My i-python tutorial on cost-sensitive boosting algorithms and 
calibration:
https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial

• He, Haibo, and Edwardo A. Garcia. ‘Learning from imbalanced data.’ 
IEEE Transactions on knowledge and data engineering (2009)

• Rich Caruana and Alexandru Niculescu-Mizil. ‘An empirical 
comparison of supervised learning algorithms.’ ICML (2006)

• Bianca Zadrozny and Charles Elkan. ‘Transforming classifier scores 
into accurate multiclass probability estimates.’ KDD (2002)

https://svds.com/learning-imbalanced-classes/
https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial


Further reading

• Lavrač N., Flach P., Zupan B. ‘Rule Evaluation Measures: A 
Unifying View.’ Inductive Logic Programming. (1999).

• Peter A. Flach. ‘The geometry of ROC space: understanding 
machine learning metrics through ROC isometrics.’ ICML 2003

• Paula Branco, Luís Torgo, and Rita P. Ribeiro. ‘A Survey of 
Predictive Modeling on Imbalanced Domains.’ ACM Comput. 
Surv. (2016)

• Saito, Takaya, and Marc Rehmsmeier. ‘The precision-recall plot 
is more informative than the ROC plot when evaluating binary 
classifiers on imbalanced datasets.’ PloS one (2015)



Thank you!

Questions?



Additional Slides
(not used in talk)



What not to do

• Accuracy / misclassification error

• Treats all types of errors equally

• Can get a nearly perfect score by predicting every example as Neg

• Minimize rare class misclassifications (FNs)
• Assigns zero importance to frequent class errors (FPs)

• Can get a perfect score by predicting every example as Pos

𝐸𝑟𝑟𝑜𝑟 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁



What not to do

• Maximize just Precision or just Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(1 if a single Pos prediction that is 

indeed Pos)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(1 if all examples are predicted Pos)

• Use uncalibrated probability estimates
• Don’t make decisions using unreliable estimates Ƹ𝑝(𝑦 = 𝑃𝑜𝑠|𝒙)



Calibrating probability estimates

• Use scoring rules (Brier score, log-loss) to check
(pre & post calibration)

• Isotonic regression, plat scaling (should correct for class imbalance)

• Might need to use different loss function during calibration when 
your goal differs from risk minimization

“Classifier Calibration”. Flach. Encyclopedia of 
Machine Learning and Data Mining. 2016

“Predicting good probabilities with 
supervised learning”. Niculescu-Mizil, 
Caruana. ICML. 2005

‘‘Probabilities for SV machines’’. 
Platt. Advances in Large Margin 
Classifiers. 2000

"Strictly Proper Scoring Rules, Prediction, and Estimation“. Gneiting, 
Raftery Journal of the American Statistical Association. 2007



ROC curves & AUC



Modifying the algorithm

• Before training: Reweight examples
(not really modifying alg. but equiv. in expectation…)

• During training: Change the loss function

• After training: Shift the decision threshold

Can be equiv. to oversampling minority w/o synthetic data

Use appropriate measure (see Part I)

Discussed in Part I; can set threshold with cross-validation
or -if imbalance/costs known- using decision theory



Anomaly detection

Only model majority class Given new datapoints Assign them to minority class 
only if ‘significantly different’ 
than majority class

‘‘Anomaly detection : a survey’’. 
Chandola, Banerjee, Kumar. 
ACM Computing Surveys. 2009

‘‘Novelty detection : a review’’. Markou, 
Singh. Signal Processing. 2003


