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What is AdaBoost?

Bagging = “Parallel”
AdaBoost = “Sequential”

Originally binary classification

Extensions for multiclass, regression, ranking, ...
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History of the Concept (1)

 Can we turn a weak learner into a strong learner?
(Kearns, 1988)

* Yes! (Schapire, 1990)

data + labels

.

Majority Vote

better than
“Filter” N F|Iter N “Filter” N Model 1
Examples Examples Examples

Model 1 Model 2 Model 3

e Adaptive boosting (Adaboost): M models built

“adaptively” (Freund & Schapire, 1997) 2003 Gédel Prize
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review current and further research on the algorithm. These 10 algorithms cover classification,
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AdaBoost as an Ensemble Method

* Prediction: Weighted majority vote among M weak learners

New Example x'

N T

Model 1 Model 2 Model3 «« oo Model M

\/
hu(x)

H(x") : Final Prediction on ¥’

* Can apply to any supervised base learner...
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How is AdaBoost “Adaptive’?

* |dea: Construct strong model sequentially by
combining multiple weak models

data + labels

Dataset 2 | Dataset 3 Dataset 4

Model 1 Model 2 Model 3 Model 4

e Each model tries to correct the mistakes of the
previous one



AdaBoost: Algorithm Outline

Algorithm 1: AdaBoost Sketch

Input: Training Data S = {(x1,y1),...,(xn.¥n)}, Number of rounds M.
Training;:
Define a weight distribution over the examples D} — % fori=1,2,...,N.
for round j =1 to M do
Build a model h; from the training set using distribution D
Update DVt from DV:
Increase weights of examples misclasified by h;.
Decrease weights of examples correctly classified by h;.
end for
Prediction: For a new example x’, output the weighted (confidence-rated) majority vote of the

models {hy, ha, ..., hy}.

hit h: Ma ha
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* Both train many models on different versions of
initial dataset and then aggregate, but...

Resample dataset Resample or reweight dataset
Builds base models in parallel Builds base models sequentially
Reduces variance Also reduces bias

(doesn’t work well with e.g. (works well with stumps)

decision stumps)

* So, bagging & AdaBoost fundamentally different!
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Algorithm 1: AdaBoost Sketch
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Algorithm 2 AdaBoost
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Obtain a hypothesis h; that minimizes ¢; and satisfies the condition ¢; <

1—e¢;
o = % log ( ejf).

DitL — a—vihi(xi)aj i
I

ra| =

end for
Prediction: H(x') = sign [ZJ'LL o h; (x’)].

y € {_13 1}
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AdaBoost: Algorithm

Algorithm 2 AdaBoost

Input: Training Data S = {(x1,v1),....(xn.¥n)}, Number of rounds M.
Training:
D} =41, fori=1,2,....N. _ |
for j = 1 to M do gj: weighted error of the j-th model
Define[ej = Zf:hj(x,-}#yf Df]/
Obtain a hypothesis h; that minimizes ¢; and satisfies the condition ¢; < %

[&jzélog( ;

aj: confidence” of the j-th model

=t
IL__I"l"l
S

- (. ] ) ) )
Dfrl — e Vihj(xi)a; D! Update weights for next iteration
: j+1 N
+1_ D .
Df{ — qur_l Df‘l : After normalization we have: Z D{_l =1
end for \- i=1 J

Prediction: H(x') = sign {Z}il o h; (x’)].

y € {_13 1}



AdaBoost: Prediction

* A new example x" arrives

 Each weak learner’s vote hj(x’) € {-1,1} is weighted
by its confidence a; to get the final prediction

H(x') = sign [z}‘i , {;l-jhf(xf)}
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* |n each training round:
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Adaboost: Training (1)

* |n each training round:
Define ¢; = Z,-:hj(xf)#yf D:.

Obtain a hypothesis h; that minimizes € < %
1 1—e€;
aj = 5 log ( - L). QUESTION:

Dj+1 — e —yih (x )@JDJ What if Ej > %?

ANSWER: Just flip predictions!

Resulting learner has €] < %



Adaboost: Training (2)

* |n each training round:
Define ¢; = Z,-:hj(xf)#yf D:.
Obtain a hypothesis h; that minimizes ¢;

1—
o = 1Iog( o
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Adaboost: Training (2)

* |n each training round:
Define ¢; = Zi:hj(x;)#y; D!
Obtain a hypothesis h; that minimizes ¢;
= dog(50) (g <} v 0;50)
Dfrl —y,hj(x )a»:J,DJ




Adaboost: Training (2)

* |n each training round:
Define ¢; = Z:’:hj(x;);éy; D!

Obtain a hypothesis h; that minimizes ¢;

= )e—[But€j<%,so (}J}OJ
%oﬁl e~ Vihj(x1)oy pi.

ﬂ%emember, Yy < { 1 1} 5o, 2 cases: \
Yi = hj(xr’) - y;h (X:) =1 = DH_I — € QJD}: — DH_I DJ

]
(h;+1 can afford to pay less attention to /-th example)
OR

Vi # hi(x;) = yihi(x;) = -1 = D{H — eﬂ"fD{ — D{H > Df
\(hJH.l must try harder than h; to get i-th example right) W,




Adaboost: Training (3)

* |n each training round:
Define ¢; = Zi:hj(x;)#y; D!
Obtain a hypothesis h; that minimizes ¢;

1—
o = 1Iog( -

—).
%{DJ-}—l o Vih (x)aJ,DJ

-

Note: weight updates are confidence-rated;
the higher the confidence a;, the greater the
weight increase/decrease of each p/*!

\_




Why this (Xj?

* Why the magic choice of o = % Iog(l_ef) ?
* Beyond scope of lecture

* A consequence: 50% of new weight mass D™

assigned to examples misclassified by previous
learner h;.

— Decorrelates consecutive learners
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Resistance to Overfitting

* Often we observe AdaBoost behaving like this:

205

15/\ Notice something
= 10 strange?
5

Test
O§ \ ... Training
I 10 100 1000
# rounds

* Test error decreases even after training error reached zero!

e But... more weak learners... more complex hypothesis, how
come we are not overfitting?



An Explanation: Margin Theory

Voting Margin = Fraction Voting Correctly — Fraction Voting Incorrectly
Not SVM margin, but related; measures confidence of the ensemble

M Vote for Correct

M Vote for Wrong

Ensemble 1 Ensemble 2

AdaBoost keeps increasing the margins even after it has managed to
classify all training examples correctly (Schapire et al, 1998)



Interpretations of AdaBoost

PAC learning (Schapire, 1990)

Game Theory (Freund & Schapire, 1996)

VC-Theory (Freund & Schapire, 1997)

Margin Theory (Schapire et al, 1998)

Information Theory (Kivinen & Warmuth, 1999)

Optimizing Bregman Divergence (Collins, 2000)

Minimization of an exponential loss (Friedman et al, 2000)

Functional Gradient Descent (Mason et al, 2001)

Probabilistic (Lebanon & Lafferty, 2001; Edakunni, Brown & Kovacs, 2011)
Dynamical systems (Rudin et al, 2004)

Implicit regularization via early stopping (Rosset et al, 2004; Zhao & Yu, 2007)

And many more, mostly complementary; each explains some aspects
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Strengths & Weaknesses

Few parameters Needs a termination condition
Simple to implement Sensitive to noisy data & outliers Why?
Implicit feature selection Must adjust for cost-sensitive or

imbalanced class problems

Resistant to overfitting (when low noise) Must adjust to handle multiclass tasks

Performs very well in practice



What we Learned

Boosting: Turning a weak learner into a strong one
AdaBoost powerful and popular ensemble method
Consistently ranks well w.r.t. other learning algorithms
Each round focus on examples previously misclassified
Different than Bagging

Strengths: simple, few parameters, implicit feature
selection, resistant to overfitting (expl. by margin theory)

Weaknesses: outliers/noise, termination, skew/cost-
insensitive, must be modified for multiclass problems

Many interpretations, a fertile research area



Thank You!

Questions?



