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Part I: Solomonoff Induction



Foreword

• ‘… Solomonoff induction makes use of concepts and 
results from computer science, statistics, 
information theory, and philosophy […] 
Unfortunately this means that a high level of 
technical knowledge from these various disciplines 
is necessary to fully understand its technical 
content. This has restricted a deep understanding 
of the concept to a fairly small proportion of 
academia which has hindered its discussion and 
hence progress’ 

-Marcus Hutter



Introduction



Types of Reasoning

Deductive 
• Drawing valid conclusions 

from assumed/given premise 
(reasoning about the known)

• Mathematical Proofs
• Formal Systems (Logic)

Inductive
• Drawing ‘the best’ conclusion 

from a set of observations
(reasoning about the unknown)

• Learning rules from examples
• Scientific Method

• Drawing ‘the best’ conclusion from observed, 
specific (training) cases to specific (test) cases

• Learning properties of objects from examples 

Transductive



Induction

• Given data O
• Discover process H that generated O

(Can then use H to make predictions O’)



Learning / Statistical Inference

• Given data O
• Find hypothesis (model) H that explains O

(Can then use H to make new predictions O’)



Solomonoff Induction

• A recipe for performing inference (induction)
• Basic Ingredients:

– Epicurean Principle
– Occam’s Razor
– Bayes Theorem
– Universal Turing Machines
– Algorithmic Information Theory



The Ingredients



Running Example:
The Case of the Missing Cookie

• You just baked cookies & left them out to cool
• Your 8yr old child was in the kitchen with you
• You turn your back for a few seconds & then

this is what you see:

• What happened?



The Epicurean Principle

• ‘If several theories are consistent with the 
observed data, retain them all’.

Consider all hypotheses
that explain the data

Epicurus ( Ἐπίκουρος)
(c. 341–270 BC)



Epicurus on ‘the Missing Cookie’

• Hypotheses consistent with your data:
– The child ate it
– You ate it & forgot it
– Someone else came in, ate it & left unnoticed
– The missing cookie was never there to start with
– Your entire ‘life’ is a figment of your imagination, in 

fact you have been in a coma for the last 10 years
– Aliens, obviously

⋮



Occam's (Ockham's) Razor

• ‘Among competing hypotheses that predict 
equally well, the one with the fewest 
assumptions should be selected’.

Explanatory power being equal,
favor simpler hypotheses

William of Ockham
(c. 1287–1347)



Ockham on ‘the Missing Cookie’

– The child ate it
– You ate it & forgot it
– Someone else came in, ate it & left unnoticed
– The missing cookie was never there to start with
– Your entire ‘life’ is a figment of your imagination, in 

fact you have been in a coma for the last 10 years
– Aliens, obviously

⋮



Bayes’ Theorem

• P(H|O) = P(O|H)P(H)
P(O)

Transform prior distribution
to posterior based on evidence

Thomas Bayes
(c. 1701 – 1761)

likelihood prior

posterior



Bayes on ‘the Missing Cookie’

– The child ate it
– You ate it & forgot it
– Someone else came in, ate it & left unnoticed
– The missing cookie was never there to start with
– Your entire ‘life’ is a figment of your imagination, in 

fact you have been in a coma for the last 10 years
– Aliens, obviously

⋮ Evidence supports all 
hypotheses ௜, but priorsܪ
P(ܪ௜) differ, so P(ܪ௜|O) differ



Universal Turing Machine

• A universal model of computation

A way to formalize the
concept of ‘algorithm’

Alan Mathison Turing
(1912 – 1954)



Information Theory

• A quantitative study of information

A way to formalize the
concept of ‘information’

Claude Elwood Shannon
(1916 – 2001) 



Algorithmic Information Theory
• Relate computation, information & randomness

A formalization of the concept of ‘complexity’

Andrey Nikolaevich
Kolmogorov
(1903 –1987)

Gregory John
Chaitin

Ray Solomonoff
(1926 –2009) 



Solomonoff Induction



The Problem

• Given data O
• Discover process H that generated O

• Need an induction algorithm A :

Induction 
Algorithm 

A

Data
O

Hypothesis  
H

Induction



Spoiler: Induction is Ill-posed

Model H Data O

• ‘Inverse problem’: Inferring model (hypothesis) 
from data (set of observations)

• Data can be consistent with multiple hypotheses
Forward 
Problem

Inverse 
Problem



Solomonoff Induction

Solomonoff combined the Epicurean Principle & 
Occam’s Razor in a probabilistic way according to

Bayes Theorem, used Turing  
Machines to represent  
hypotheses & Algorithmic 
Information Theory to quantify 
their complexity.

Let’ s follow his reasoning…



Epicurean Principle

For starters, all hypotheses that are consistent
with the data must be examined as possibilities.

Once you eliminate the 
impossible…



Occam’s Razor

But we should drop complex hypotheses once we 
find simpler equally explanatory ones. 



Bayes’ Theorem

We could instead assign a prior probability to each 
hypothesis, deeming more complex ones less likely.

ܲ ௜ܪ ܱ = ௉ ை ு೔ ௉(ு೔)
௉(ை) , 

with ܲ(ܪ௜) lower for ‘more
complex’ hypotheses ܪ௜ (as we 
will see)



The Problem of Priors

• Why not calculate priors ܲ ௜ܪ based on data?
– If we have data, can compute them 
– If we don’ t, we can’ t; so assign them based on the 

principle that ‘simpler’ hypotheses are more likely
(we will see how this is justified)

• Next goal: Define  ‘simple’ / ‘complex’… but first
need to choose a ‘language’ to represent ܱ ௜ܪ &



Representing Data

• Represent information in binary
– 2-letter alphabet {0, 1} the smallest one that can 

communicate a difference
– can encode all information as binary strings (?)

• Data O: a binary string

1101…10011101…1001



Representing Hypotheses
௜: a processܪ that generates data, an algorithm.
Turing proposed a universal algorithm model, the Turing 
Machine (TM).

Church-Turing Thesis: TMs truly 
capture the idea of ‘algorithm’

All attempts to formalize the
intuitive idea of  ‘algorithm’ or
‘process’ have proven to be at
most as powerful as TMs



(3-Tape) Turing Machine

• Input sequence :

• Work sequence:

• Output Sequence:

• Equivalent to ‘standard’ (single tape) TMs; 
more intuitive for what we want to show here

1101…10011101…1001
0110…01010110…0101
1011…10001011…1000



(3-Tape) Turing Machine

• Every TM has a finite number of states (‘rules’)
• Starts at a state:

– Input sequence :

– Work sequence:

– Output Sequence:

0101…01110101…0111
0000…00000000…0000
0000…00000000…0000



(3-Tape) Turing Machine

• Rules for 1st state: read input & work sequences; 
depending on the values perform certain actions:
1. Feed the input tape (optional)
2. Write 0 or 1 on the work tape
3. Move the work tape left or right
4. Write 0 or 1 on output tape
5. Feed the output tape (optional)

• After that, rules specify next state and so on…



(3-Tape) Turing Machine

• A TM has a finite number of states (‘rules’)
• Rules are fixed; only what is written on the 

tapes (‘memory’) & current state are changing
• Yet with such simple, finite rules we can 

simulate every algorithm



Universal Turing Machine (1)

• Turing showed that a specific set of ‘rules’ (UTM) 
could simulate all other sets of ‘rules’ (TMs)

• Can simulate another TM by giving the UTM a 
‘compiler’ binary sequence

• Such a sequence exists for every TM

• UTM Input sequence : 11011…100111011…100110…1
Compiler TM Input



Universal Turing Machine (2)

• Hypotheses are processes,  i.e. algorithms*
• Algorithms are represented by TMs
• TMs are represented as binary input sequences  to 

the UTM, so…
• Hypotheses ܪ௜: are represented as binary input 

sequences of UTMs

*This is the only assumption of Solomonoff Induction



Solomonoff Induction

• So, a UTM will output the data ܱ if you give it 
a correct hypothesis ܪ∗ as input

• The set of all possible inputs to the UTM is the 
set of all possible hypotheses  ܪ௜

11011…100111011…100110…1
Compiler TM Input

UTM 010…110010…110
UTM Output

data ܱhypothesis ܪ∗



Solomonoff’ s Lightsaber

• Given data ܱ
• Can find all potential hypotheses ܪ௜ that 

explain ܱ	by 
– Running every possible hypothesis on a UTM

• If output matches ܱ, keep it, ܲ ܱ ௜ܪ = 1	
• Else discard it, ܲ ܱ ௜ܪ = 0



Nice… but Intractable

• Solomonoff Induction is intractable…
– ‘… every possible hypothesis …’: they are infinite
– Halting problem: some hypotheses would run 

forever w/o producing the output & we can’t 
prove they won’t terminate

• The problem of induction
is ill-posed…



Defining Simplicity / Complexity (1)
Entropy: A measure for quantifying uncertainty / 
unpredictability / surprise / (lack of) information

A message M with low entropy -> 
M is predictable -> M has low       
complexity -> is easy to compress

e.g. 0101010101 vs. 1001110100
5x‘01’

Here we will discuss the related
notion of Algorithmic Entropy…



Defining Simplicity / Complexity (2)

• Assume* true
hypothesis	ܪ∗

produced by
fair coin-flips

• As length of
sequence
grows, its
probability
diminishes

1

1

1

1 111 1

1

11

1

1

1

1

0

0

0 0

0

0 00

0 00

0

000

⁞

1/2

1/4

1/8

1/16



Defining Simplicity / Complexity (3)
• A binary sequence that is one bit shorter is twice 

as likely to be the true hypothesis ܪ∗

– Shorter sequences (hypotheses) more likely

• Kolmogorov Complexity (Algorithmic Entropy):
ܭ ௜ܪ = Length	of	shortest	description	of	ܪ௜ ,	

Remember, ‘description of ܪ௜’ : binary input to UTM



Back to the Priors

• Quantified simplicity by Kolmogorov Complexity:
ܭ ௜ܪ = Length	of	shortest	description	of	ܪ௜

• A hypothesis that is one bit shorter is twice as likely to 
be the true hypothesis ܪ∗

• So priors must be:
ܲ ௜ܪ = 2ି௄(ு೔)

• Priors of hypotheses ܪ௜ reflect principle that ‘simpler’ 
hypotheses are more likely



Putting it All Together
• Given observations ࡻ, find hypothesis ࡴ∗ that produced them
• Represent ܱ as binary sequence
• Represent hypotheses ܪ௜ as binary input sequences of a UTM
• Set ܲ ܱ ௜ܪ = 1	if ܪ௜ consistent with data, i.e. if fed as input to 

the UTM, will output ܱ, ܲ ܱ ௜ܪ = 0	for the rest
• Find Kolmogorov Complexity of  hypotheses:

ܭ ௜ܪ = Length	of	shortest	description	of	ܪ௜
• Prior of each hypothesis is   ܲ ௜ܪ = 2ି௄(ு೔)

• Use Bayes Theorem to combine evidence & priors
ܲ ௜ܪ ܱ = ௉ ை ு೔ ௉(ு೔)

௉(ை) 
• Select ܪ∗: ܲ ∗ܪ ܱ = ݔܽ݉݃ݎܽ ܲ ௜ܪ ܱ

௜ܪ



Optimal Induction is Intractable

• Solomonoff solved the problem of formalizing 
optimal inductive inference…

• … but the problem is shown to be intractable

• So we can at best approximate it…



Approximations
• Give higher prior to hypotheses ܪ௜ that can be 

quickly computed (‘Levin Complexity’ rather than 
‘Kolmogorov Complexity’)

• Randomly generate a set of hypotheses to test using 
Monte Carlo techniques

• Restrict hypothesis space

Leonid Anatolievich
Levin

Jürgen
Schmidhuber



Implementations

• Universal artificial intelligence (AIXI)

• Solomonoff Induction + Decision Theory

Marcus Hutter



Criticisms

• Which UTM? (Infinitely many…)
– Length of  each ܪ௜ as a binary sequence will depend 

on this choice thus the priors assigned to each ܪ௜ 	…
– … But only up to a constant factor (compiler to  

translate from UTM to UTM’ ), i.e. independent of ܪ௜
• True hypothesis ܪ∗	might be intractable

– No algorithm can find ܪ∗… can at best converge to it

• Can everything be represented in binary?



End of Part I



Preview of Part II

• Philosophical problems with induction
• Optimal induction intractable, yet learning 

feasible, even efficient…
• We can have guarantees on induction!
• By making assumptions & settling for 

approximations
• How we do so in ML (learning theory elements)



Thank you



Part II: Efficient Inductive Reasoning



Review of Part I

• Solomonoff Induction: formalization of optimal
inductive inference…

• … but we saw that the problem is intractable

• So we can at best approximate it

• First let’s see why it is intractable, then how to 
approximate…



Induction in Philosophy



Problem of Induction (1)

When drawing general conclusions from a set of 
observations, we either see all* observations, or 
some** of them

*all (infinite): not possible
**some: conclusions are not 

certain some other 
observation could
falsify them ‘black 
swans’) 

Sextus Empiricus
(Σέξτος Ἐμπειρικός)

(c. 160 – 210 AD)



Problem of Induction (2)

‘What is the foundation of all conclusions from 
experience?’

We cannot hold that nature will
continue to be uniform because 
it has been in the past.

(e.g. in machine learning: 
no dataset shift, stationarity)

David Hume
(1711 – 1776)



Problem of Induction (3)

A scientific idea can never be proven true; no matter 
how many observations seem to agree with it, it may 
still be wrong. On the other hand, a single counter-
example can prove a theory forever false.

Observations are always in 
some sense incomplete 
(rem. ‘black swans’) & many 
hypotheses can be consistent
with them (ill-posed)

Sir Karl Raimund Popper
(1902 – 1994)



Justified True Belief

Subject S knows that a proposition P is true iff:

• P is true
• S believes that P is true, and
• S is justified in believing that P is 

true

Plato (Πλάτων) 
(c. 427 – 348 BCE)

Induction cannot be!
Yet, we use it all the 
time… successfully!



Induction in Science



The Scientific Method

1. Make observation O
2. Form hypothesis H that explains O
3. Conduct experiment E to test H
4. If results of E disconfirm H, return to (2)

& form a hypothesis H’ not yet used
If results of E confirm H, provisionally

accept H.

Induction

Deduction



Science is Based on Induction

• The scientific method heavily relies on inductive 
inference

• Note: also exhibits elements of what we call 
active learning in machine learning terminology



Induction & Learning



Learning vs. Optimization

• Learning means generalizing to unseen instances

• Not just optimal fit on training data…

• … this is just memorization

• Induction is reasoning about the unknown, not 
the known 



Memorization vs. Learning
Input Output

1 2

4 8

5 10

6 12

9 18

11 22

17 34

20 40

22 44

• A lookup table tells us nothing 
about the output of input 2

• Learning the underlying rule
	ݐݑ݌ݐݑܱ = 2 ∗ does ,ݐݑ݌݊ܫ

• Can we guarantee that we can learn something 
from the training data?



Settling for Approximations

• Make assumptions about the data
• Restrict hypothesis space (drop Epicurean principle)
• Find a ‘good enough’ hypothesis



Assumptions About the Data

• Assume training set drawn from same 
distribution as test set (stationarity / no dataset 
shift / ‘uniformity of nature’)

• Assume independent & identically distributed 
(i.i.d.) data: same probability distribution for 
each feature & all are mutually independent 

• Similar datapoints should have similar properties 
(‘smoothness’)



Assumptions About Hypotheses

• Ignore / penalize complex hypotheses:

• Regularization (imposing more constraints)
– Train s.t. both fit is optimized & model is simple

• Model selection (post-training)
– Favor both goodness-of-fit & simplicity when 

comparing models



Overfitting vs. underfitting

• Too simple models underfit, too complex overfit

Too simple Too complex

Fail to capture pattern 
in training data

Memorize training dataset 
(including noise), fail to 

generalize on unseen data



Detecting overfitting

• Good fit on 
training set is 
necessary (no 
underfitting),

• …but not 
sufficient for 
learning (good 
fit on test data)



Bias vs. Variance
• Under certain loss functions can decompose expected  

error of a supervised learning algorithm into:
Error =  (Statistical) Bias + Variance + Noise

How ambiguous the 
problem is; Cannot 
reduce w/o re-
annotating / asking 
for more features

Error due to sensitivity to small fluctuations in 
the training set; How different on average are 
individual predictions on the same input 
produced by versions of the predictor trained 
on slightly different training sets; Can reduce 
(decrease complexity)

Systematic error due to 
assumptions built into the 
algorithm; How far on average

predictions are from truth; 
Can reduce (increase 

complexity)



Complexity & Bias-Variance

• As complexity increases, bias decreases & variance 
increases ; need to find ‘sweetspot’

• Most learning algorithms have hyperparameters to control 
the tradeoff; find optimal tuning via cross-validation



Inductive Bias
• Inductive bias of a learner: the set of assumptions it uses 

to predict outputs given inputs that it has not encountered
• Without any such assumptions, learning cannot be 

solved exactly

• e.g. Linear regression:
Only look for lines
assuming a specific
type of noise in
the data, etc.

• Don’t confuse with statistical bias which is always bad 

Tom Michael Mitchell



No Free Lunch Theorems

• If we make no prior assumption
about the nature of the learning
task*, no learning method can be
said to be superior overall (or
better than random guessing…)

• *i.e. across all possible
‘true’ hypotheses

• But not all of them equally likely or interesting!

David H. Wolpert



Embracing Uncertainty (1)

• Can have -probabilistic- guarantees on induction!
• PAC-learning: If we restrict the hypothesis space 

to be finite & use enough training examples, we 
can be fairly confident (probably)
that we find a hypothesis that is not
that bad (approximately correct), in
polynomial time[Turing Award 2010]

Leslie Gabriel
Valiant



Embracing Uncertainty (2)

• VC-theory: Similar guarantees but need not 
restrict the hypothesis space to a finite one.

• Complexity of hypotheses used in both theories: 
Cardinality of hypothesis space in PAC, VC-
dimension in VC

• Guarantees pessimistic;
in practice can do better
…perhaps also in theory?

Vladimir Naumovich
Vapnik

Alexey Yakovlevich
Chervonenkis
(1938 –2014)



Occam’s Razor Everywhere! (1)
• Kolmogorov Complexity & MDL [Part I]

– Hypotheses of smaller descr. length -> higher prior

• PAC-learning
– Tighter generalization bounds for more constrained 

hypothesis spaces given the same amount of data

• VC-theory
– As above, for hypotheses of lower VC dimension

• Logic
– Conjunctions with more conjuncts ‘easier’ to falsify



Occam’s Razor Everywhere! (2)
• (Not so) Bayesian Learning

More complex 
hypothesis ܪଶ
consistent with 
more outcomes

So ܲ(ܪ|ܦଶ) mass spread thinner than ܲ(ܪ|ܦଵ)
When ܦ in region ܥଵ	, ܲ(ܪ|ܦଵ) > (ଶܪ|ܦ)ܲ

(ܦ|ଵܪ)ܲ
(ܦ|ଶܪ)ܲ

=
(ଵܪ|ܦ)ܲ
(ଶܪ|ܦ)ܲ

(ଵܪ)ܲ
(ଶܪ)ܲ



Assumptions Everywhere!

• Both Bayesian & frequentist inference do
• Both parametric & non-parametric methods do

• Most learning theory based on assumptions…
• … some are reasonable, some not so much…



Occam’s Razor in Human Inference (1) 

• How many boxes do are there?



Occam’s Razor in Human Inference (2) 

• Are you sure?



Inductive Bias in Human Inference (1)

• Think of ‘I.Q. tests’

• Which is the next number in the sequence

0,   1,   3,   6,   10,   15,   ?



Inductive Bias in Human Inference (2)

• We could have chosen infinite other  hypotheses 
but we all thought of this one:

:ܪ ௡ାଵݔ	 	= ௡ݔ + 	݊

0,   1, 3, 6, 10, 15, 21
1    2     3     4       5      6

• …because of our built-in inductive bias



We Machine Learners Must… 

• Be aware that induction is an ill-posed problem & 
its optimal solution intractable

• Be aware of the limits of our predictions 
(confidence, approximations)

• Be aware of our assumptions (inductive bias) and 
how realistic they are in the problem at hand

• Not be discouraged by all these; inductive reasoning 
is –apparently– a solved problem in nature (at 
least most of the time, approximately & under 
certain assumptions)!



End of Part II



Thanks again!


