Gradient boosting models for photovoltaic power estimation under partial shading conditions

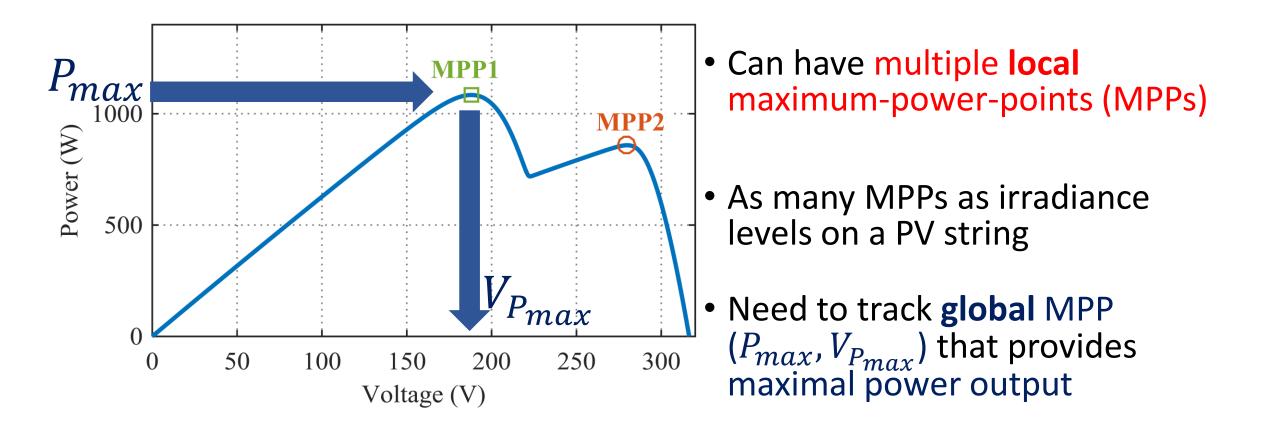
Nikolaos Nikolaou, Efstratios Batzelis, Gavin Brown

The University of Manchester

Imperial College London

Partial shading in PV panel strings

Characteristic *P*-*V* curve of a partially shaded string



Main approaches Used

1. Circuit-based methods

- Strong theoretical foundation
- High accuracy
- Require tedious simulations
- 2. Heuristic methods
 - Fast
 - Lower Accuracy

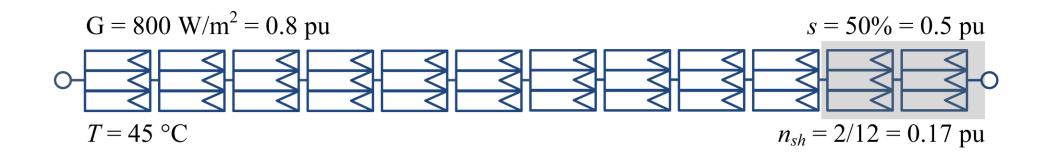
Empirical formulas

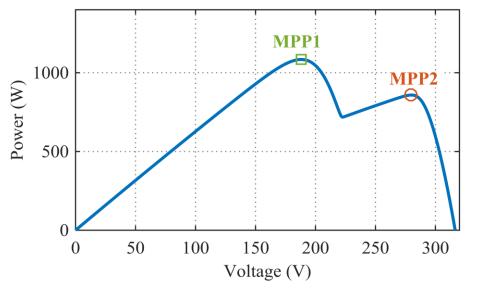
- Simple formulation
- Low accuracy

Ι.

- II. Circuit equations
 - Provide all MPPs
 - Good average accuracy
 - Occasionally high errors

Two irradiance levels (common case)



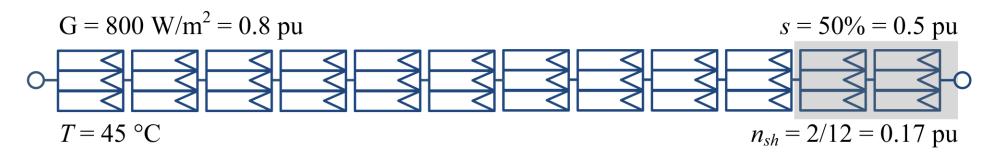


Operating conditions

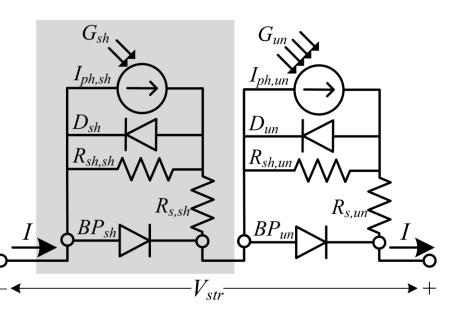
G: irradiance (full) T: temperature s: shadow ratio n_{sh} : shadow extent

2 irradiance levels: *P*-*V* curve has up to 2 local MPPs

Equivalent circuit



- Simulate circuit under operating conditions to obtain *P*-*V* curve
- Find global MPP of *P*-*V* curve



Closed-form solution of the equivalent circuit

• Compute the local MPPs

$$MPP1: \begin{cases} V_1 = N_{tot}[(1 - n_{sh})V_{mp}^T + n_{sh}\Delta V_D] \\ I_1 = GI_{mp}^T \\ P_1 = V_1I_1 \end{cases}$$
$$MPP2: \begin{cases} V_2 = N_{tot}[(1 - n_{sh})(sV_{mp}^T + (1 - s)V_{oc}^T) + n_{sh}V_{mp}^T] \\ I_2 = sI_{mp}^T[1 + \lambda(1 - nsh)] \\ P_2 = V_2I_2 \end{cases}$$

• Then find global MPP

global MPP:
$$\begin{cases} P_{max} = max\{P_1, P_2\} \\ V_{P_{max}} = \{V_{i^*} : i^* = \arg\max_{i \in \{1,2\}} P_i\} \end{cases}$$

Modelling using machine learning

• Train on examples of

input (feature) $[G, T, s, n_{sh}] \&$ output (target) $[P_1, V_1, P_2, V_2, P_{max}, V_{P_{max}}]$ vector pairs

- Goal: Better approximate (P_{max} , $V_{P_{max}}$) than closed-form equations
- Also included 'intermediate targets' of MPP1 (P₁, V₁) & MPP2 (P₂, V₂)
 2 of the 3 models we train use these

Modelling the circuit using machine learning

- Models examined: Gradient Boosted Trees (Regression & Classification) FW will include Random Forests (initial results favourable) & Neural Networks
- In every case, **consider** *P* **&** *V* **independent**

Correlation very low - verified by initial experiments FW will include relaxing this assumption

Model 1: Direct modelling of global MPP

- Do not use intermediate targets (local MPPs) directly model global MPP
- Train **2 regressors** (can do in parallel, since independent):

$$[G, T, s, n_{sh}] \rightarrow P_{max}$$
$$[G, T, s, n_{sh}] \rightarrow V_{P_{max}}$$

 Given a reasonable amount of data already beats closed-form equations... But can do better!

Model 2: Stagewise modelling of global MPP

- First model local MPPs (intermediate targets), then predict global MPP
- Train 4 regressors (can do in parallel, since independent):

$$\begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow P_1 \\ \begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow V_1 \end{bmatrix}$$
 MPP1
$$\begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow P_2 \\ \begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow V_2 \end{bmatrix}$$
 MPP2

• To predict global MPP:
$$\begin{cases} P_{max} = max\{P_1, P_2\} \\ V_{P_{max}} = \{V_{i^*} : i^* = \arg \max_{i \in \{1,2\}} P_i \} \end{cases}$$

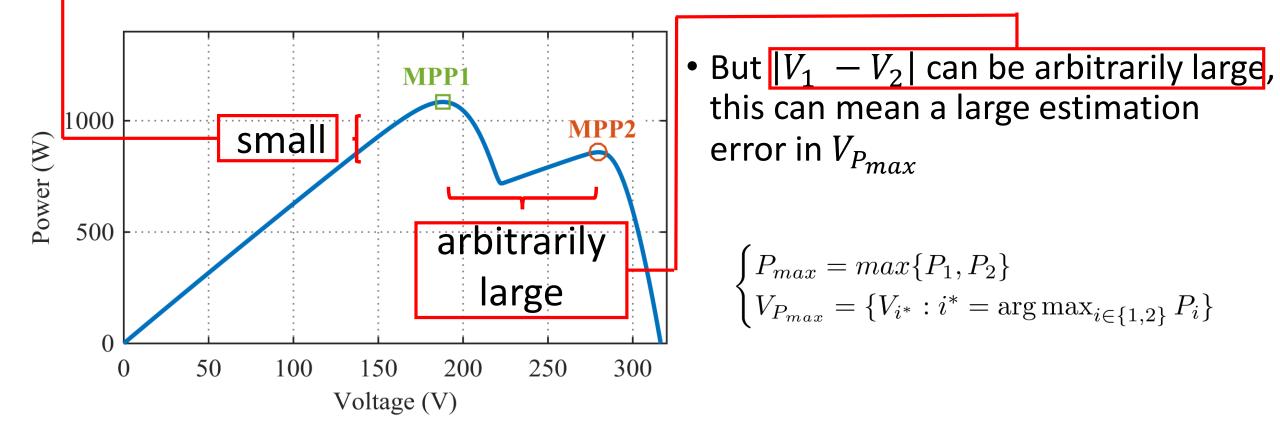
Model 2: Stagewise modelling of global MPP

 Given a reasonable amount of data already beats closed-form equations... Also beats direct model (Model 1)... But can do even better!

• Why? Because intermediate outputs are FAR better estimated than those of closed-form equations. In P_{max} this is reflected, but why not in $V_{P_{max}}$?

Model 2: Stagewise modelling of global MPP

• **Hypothesis**: In situations when $P_1 \cong P_2$, small estimation errors will have a small effect on P_{max} , but can cause us to predict the wrong V_i as $V_{P_{max}}$



Model 3: Stagewise, classifier-aided modelling of global MPP

- First model local MPPs (intermediate targets) & a mapping from input to the local MPP that is the global one, then predict global MPP
- Train 4 regressors & 1 classifier (can do in parallel, since independent):

$$\begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow P_1 \\ \begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow V_1 \\ \begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow P_2 \\ \begin{bmatrix} G, T, s, n_{sh} \end{bmatrix} \rightarrow V_2 \end{bmatrix}$$
 MPP2

 $[G, T, s, n_{sh}] \rightarrow \{MPP1 \ is \ global, MPP2 \ is \ global\}$

• To predict global MPP: If *MPP1 is global*, then $P_{max} = P_1$ and $V_{P_{max}} = V_1$ Else $P_{max} = P_2$ and $V_{P_{max}} = V_2$

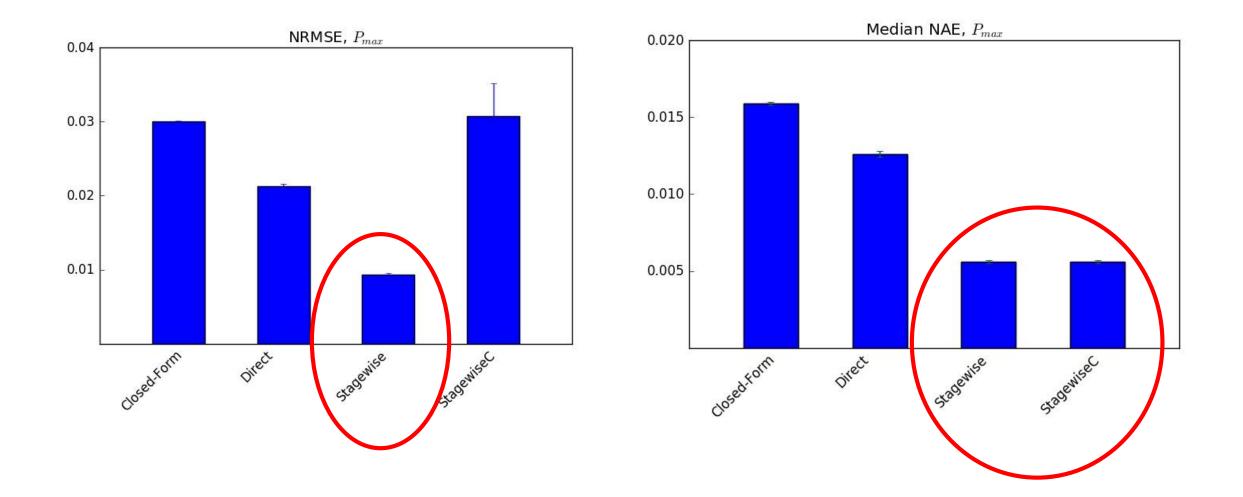
Experimental Setup

- 94905 datapoints generated by simulating circuit under various conditions
- Compare approximation of three models against closed-form estimates
- Ensemble size M=1000, tree depth d=3
- Trained on 75% of the data have learning curves with fewer as well

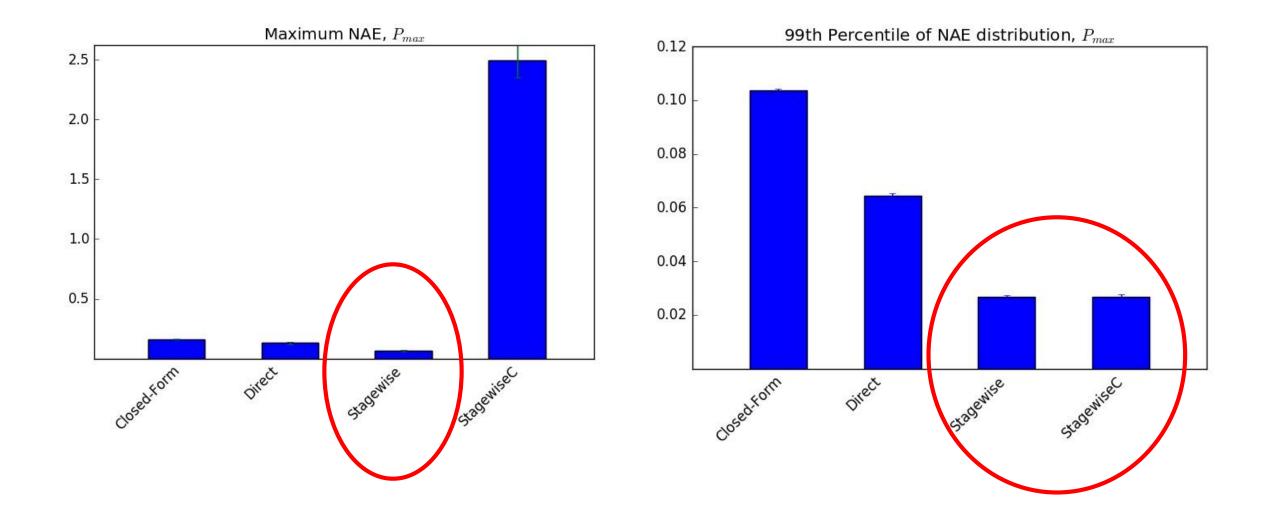
$$NRMSE = \sqrt{\sum_{n} (X_n - \hat{X}_n)^2} / \mu_X$$

$$NAE_n = |X_n - \hat{X_n}| / \mu_X$$

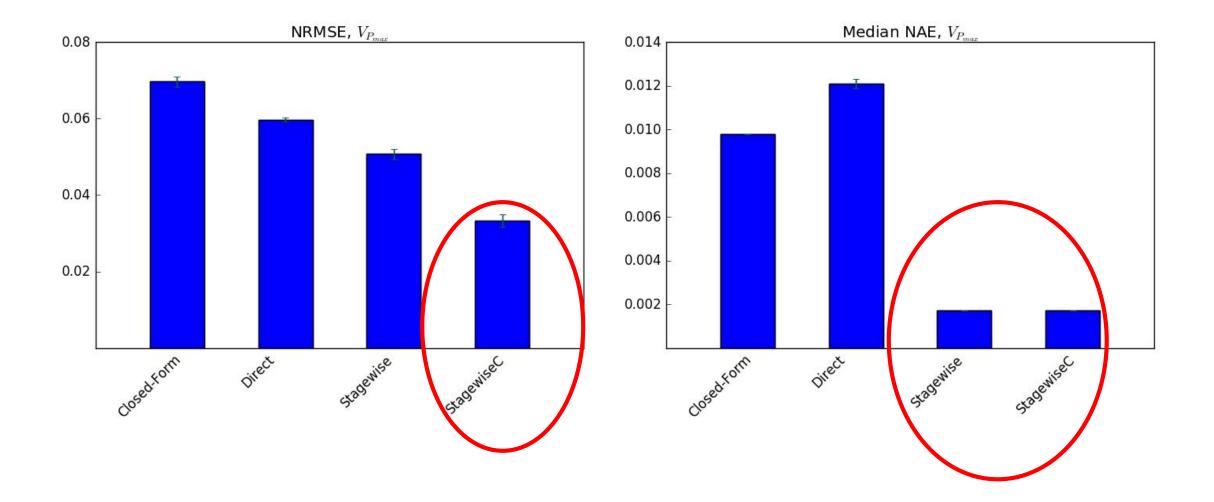
Results - P_{max} (Average NRMSE, Median NAE)



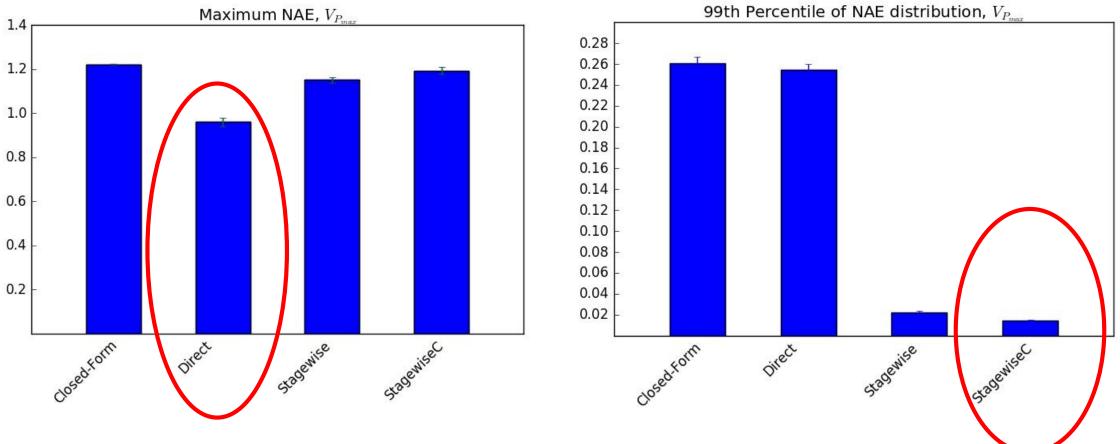
Results - P_{max} (Maximum NAE, 99th Percentile of NAE)



Results - $V_{P_{max}}$ (Average NRMSE, Median NAE)



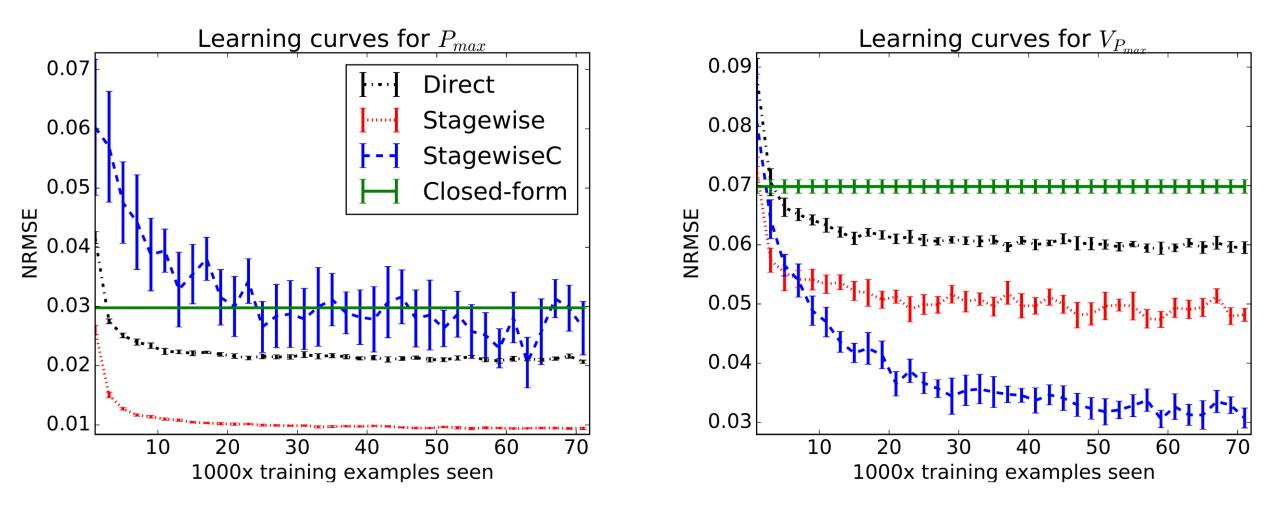
Results - $V_{P_{max}}$ (Maximum NAE, 99th Percentile of NAE)



Results – advice for practitioners

- To minimize **maximum error in** $V_{P_{max}}$, use Model 1
- To minimize average or maximum error in P_{max} , use Model 2
- To minimize **average error in** $V_{P_{max}}$, use Model 3
- For overall good performance, use Model 2, or combine Models 2 & 3

Effect of training set size



Conclusions

- A small training set is sufficient to outperform closed-form...
- ... on average (& median) AND worst case
- Thin-tailed error distribution some statistical guarantees
- Increasing ensemble size and/or tree depth improves performance at increased computational cost
- To some degree **parallelizable**, **fast** to train very fast to predict

Extensions

- More irradiance levels up to 4-5 in practice
- Non-uniform temperature
- Different PV configurations e.g. arrays (strings in parallel)
- More machine learning methods (Random Forests, Bagging, NNs)
- More experimentation with hyperparameters, multi-objective optimization of cost & performance
- Taking **correlations** into account
- Interpreting models could relate them back to circuit theory

Thank you!