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Partial shading in PV panel strings
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Characteristic P-V curve of a partially shaded string

e Can have multiple local
maximum-power-points (MPPs)
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* As many MPPs as irradiance
levels on a PV string
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" Pmax * Need to track global MPP

0 50 100 150 200 250 300 (Pmax»VP )that provides
Voltage (V) maximal power output




Main approaches Used

1. Circuit-based methods
» Strong theoretical foundation

* High accuracy |.  Empirical formulas
* Require tedious simulations * Simple formulation
2. Heuristic methods ] * Low accuracy
* Fast — |ll.  Circuit equations
* Lower Accuracy * Provide all MPPs
- * Good average accuracy
* Occasionally high errors




Two irradiance levels (common case)

G = 800 W/m*= 0.8 pu s=50%=0.5pu
=y
T=45°C ng,=2/12=0.17 pu
| . | Operating conditions
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Equivalent circuit

G = 800 W/m* = 0.8 pu

s =50% =0.5 pu
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* Simulate circuit under operating
conditions to obtain P-V curve

* Find global MPP of P-VV curve

ng,=2/12=0.17 pu
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Closed-form solution of the equivalent circuit

 Compute the local MPPs

(Vi = Nyot[(1 — Nsh) Vip + 1sn AVD]

MPP1:{ I, = GIZ,

\Pr=Vily

(Vs = Niaal(1 = nan)(VE, + (1= $)VE) + VT
MPP2: ¢ I, = sI! [1+ A1 — nsh)]

| P2 = Vals

* Then find global MPP

(Pma,:r: — mam{PlaPQ}
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Modelling using machine learning

* Train on examples of
input (feature) [G, T, s, ng,| &
OUtPUt (targEt) [Pll Vll PZ) VZ) Pmaxz VP

| vector pairs
max

* Goal: Better approximate (Pyqx, Vp,_ ) than closed-form equations

* Also included ‘intermediate targets’ of MPP1 (P, V;) & MPP2 (P,, 1/5)

2 of the 3 models we train use these



Modelling the circuit using machine learning

* Models examined: Gradient Boosted Trees (Regression & Classification)
FW will include Random Forests (initial results favourable) & Neural Networks

* In every case, consider P & I/ independent
Correlation very low - verified by initial experiments
FW will include relaxing this assumption



Model 1: Direct modelling of global MPP

* Do not use intermediate targets (local MPPs) — directly model global MPP

* Train 2 regressors (can do in parallel, since independent):

[Gr Tr S, nsh] - Pmax
G, T,s, ngp] > Vp___

* Given a reasonable amount of data already beats closed-form equations...
But can do better!



Model 2: Stagewise modelling of global MPP

* First model local MPPs (intermediate targets), then predict global MPP

* Train 4 regressors (can do in parallel, since independent):

Gl T; SI nSh: - Pl-
_Gl T; S, nSh: - Vl_- MPPl
:Gl T; S, nSh: - Pz-
-Gr T; SI nSh: — Vz_- MPPZ

Pmagg — ma/ﬂ?{Pl,PQ}
Vp

max

T dict global MPP:
Opre IC gO d { — {'[/;* Z* :argmaxie{l,g} P’L}



Model 2: Stagewise modelling of global MPP

* Given a reasonable amount of data already beats closed-form equations...
Also beats direct model (Model 1)...
But can do even better!

 Why? Because intermediate outputs are FAR better estimated than those
of closed-form equations. In B, this is reflected, but why notin V/p 7



Model 2: Stagewise modelling of global MPP

* Hypothesis: In situations when|[P; = P,}| small estimation errors will have a
small effect on P4y, but can cause us to predict the wrong V; as Vp

| : Mppi * But||V; —V,| can be arbitrarily largg,
1000 koo — — P N\ || this can mean a large estimation

;: : : : : errorinVp
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Model 3: Stagewise, classifier-aided modelling of global MPP

* First model local MPPs (intermediate targets) & a mapping from input to the
local MPP that is the global one, then predict global MPP

* Train 4 regressors & 1 classifier (can do in parallel, since independent):

G, T,s, sy
G, T, s, ngy|
G, T, s, ngy|
G, T, s, ng|

G, T,s, ng,|

—>P1 -_
SV, MPP1
—>P2 -_
SV, [ MPP2

— {MPP1is global, MPP2 is global}

* To predict global MPP: If MPP1 is global, then By = Py andVp =1

Else

Pmax = Pz and meax — Vz



Experimental Setup

* 94905 datapoints generated by simulating circuit under various conditions
 Compare approximation of three models against closed-form estimates

* Ensemble size M=1000, tree depth d=3

* Trained on 75% of the data - have learning curves with fewer as well

NRMSE = \/ Y (X, - X)2 / Ly NAE, = X, — X,|/11x
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Results - P, (Maximum NAE, 99t Percentile of NAE)
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Results - Vp  _ (Average NRMSE, Median NAE)

0.08

0.06

0.04 -

0.02 |

NRMSE, Vp,

0.014

0.012 -

0.010

0.008

0.006 |-

0.004

0.002 |-

Median NAE, Vp




Results -Vp  (Maximum NAE, 99" Percentile of NAE)
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Results — advice for practitioners

* To minimize maximum errorin VVp _, use Model 1

* To minimize average or maximum error in P,,,, , use Model 2
* To minimize average errorin Vp , use Model 3

* For overall good performance, use Model 2, or combine Models 2 & 3



Effect of training set size

Learning curves for P,,,..
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Conclusions

* A small training set is sufficient to outperform closed-form...
e ...on average (& median) AND worst case

* Thin-tailed error distribution - some statistical guarantees

* Increasing ensemble size and/or tree depth improves performance
at increased computational cost

* To some degree parallelizable, fast to train - very fast to predict



Extensions

* More irradiance levels - up to 4-5 in practice

* Non-uniform temperature

e Different PV configurations - e.g. arrays (strings in parallel)
 More machine learning methods (Random Forests, Bagging, NNs)

 More experimentation with hyperparameters, multi-objective
optimization of cost & performance

* Taking correlations into account
* Interpreting models - could relate them back to circuit theory



Thank youl!



