

The University of Manchester

Cost-sensitive Boosting Algorithms: Do we really need them?

Nikolaos Nikolaou¹, Narayanan Edakunni¹, Meelis Kull², Peter Flach² and Gavin Brown¹ ¹School of Computer Science, University of Manchester; ²Department of Computer Science, University of Bristol nikolaos.nikolaou@manchester.ac.uk

Basically, no.

We analyse **20** years of literature, with the axioms of **4** distinct frameworks:

Decision Theory Margin Theory Probabilistic modelling **Functional Gradient Descent**

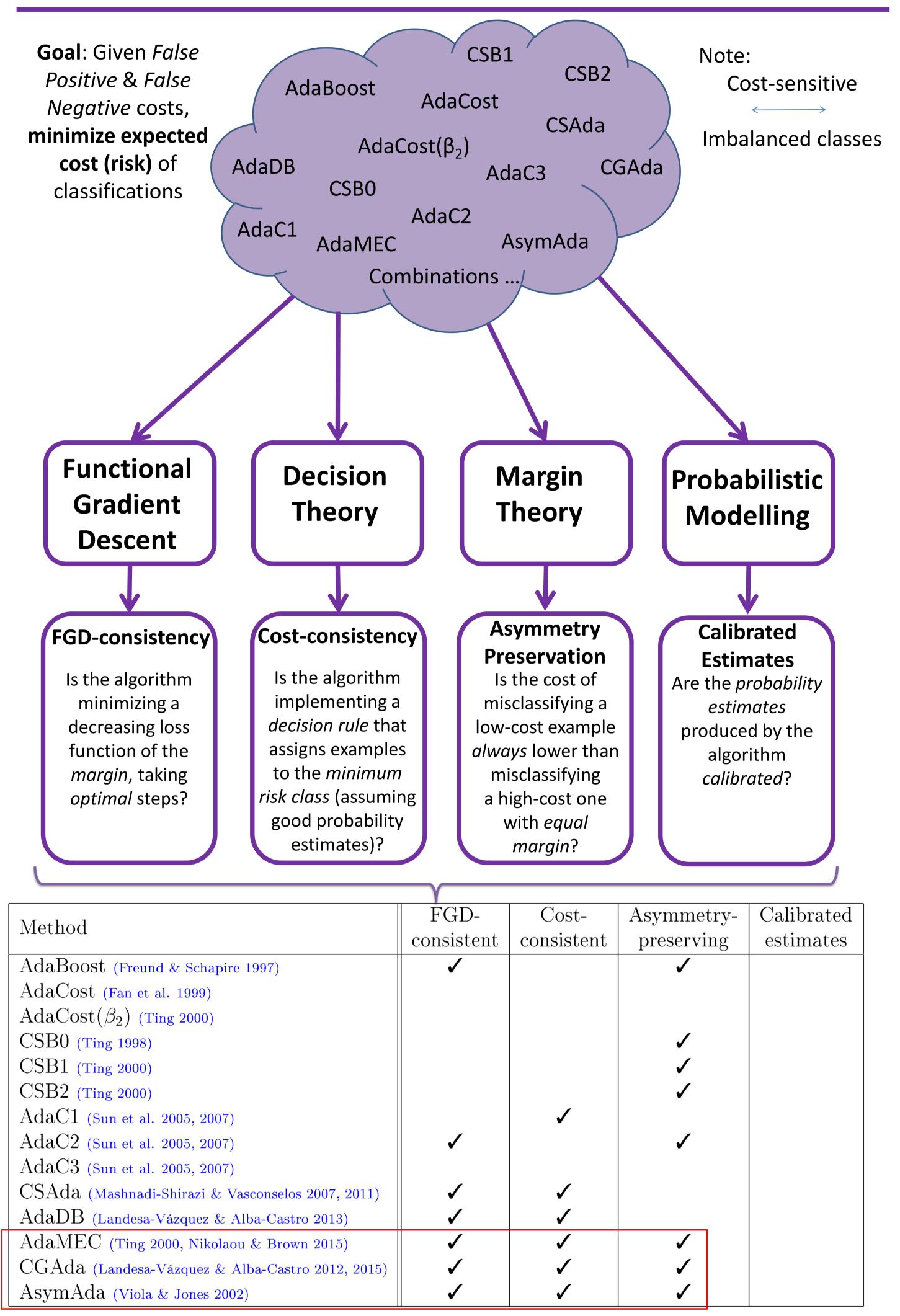
From 15+ boosting variants over 20 years:

... only **3** are consistent with all axioms... and even then, only if we calibrate their outputs... Final recommendation – use the ORIGINAL (Freund & Schapire 1997) and calibrate it.

Now... read on...

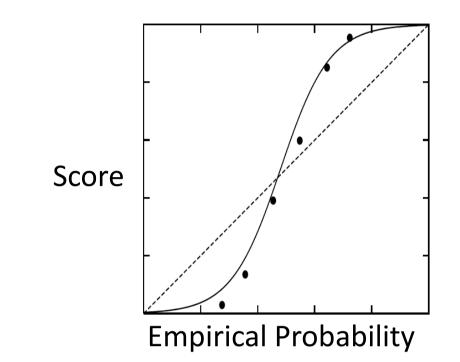
A Unified Perspective

Calibration

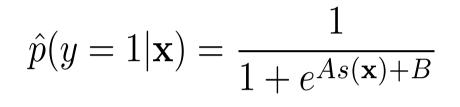


The mapping of scores to empirical probabilities exhibits a **sigmoid** distortion

Platt scaling (logistic calibration) to correct – need separate training & calibration sets

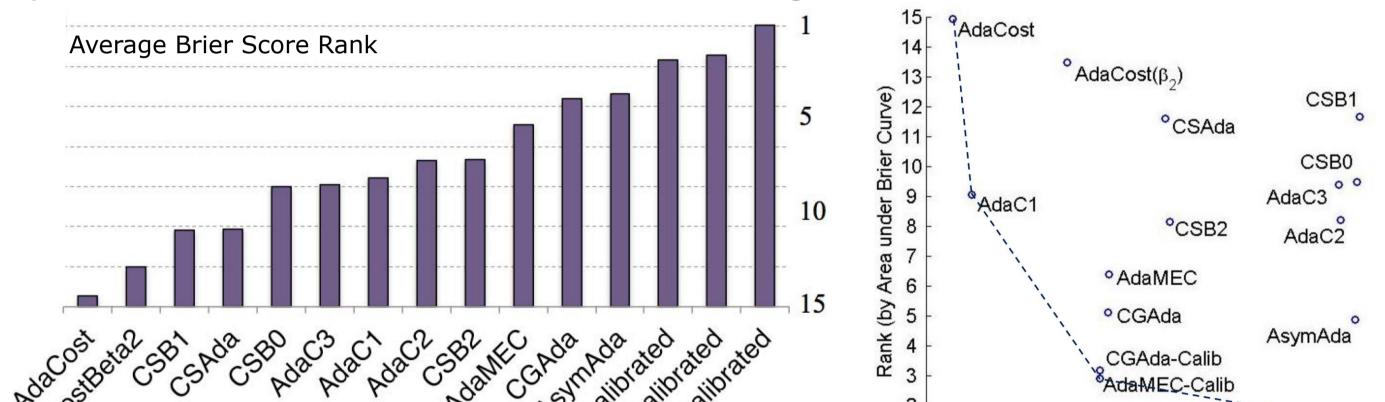


Find A, B for mapping raw scores s(x) to calibrated probability estimates

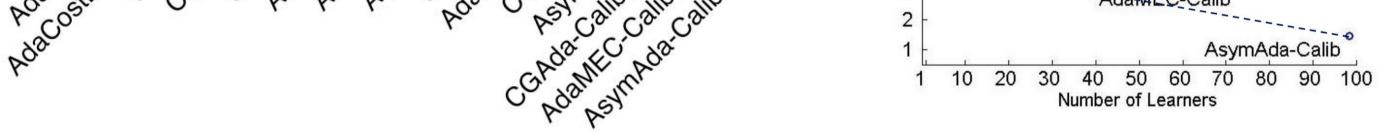


Results

Experiments on 18 datasets, across 21 degrees of cost imbalance

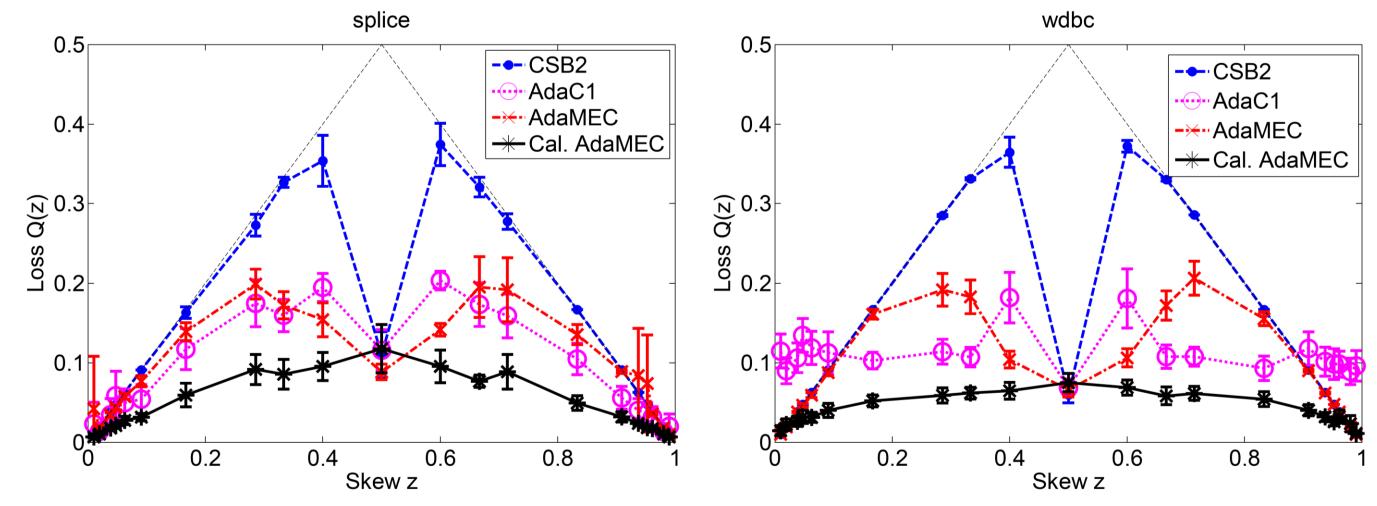


All boosting algorithms produce uncalibrated probability estimates (scores) **Only 3 variants satisfy all other properties** – all approximate the same model in different ways, each introduces cost-sensitivity at a different stage:



- AdaMEC, CGAda & AsymAda **outperform all others**
- Their **calibrated** versions **outperform** the **uncalibrated** ones
- Among the 3, AsymAda lowest Brier score, but uses more weak learners
- Fixing Num. weak learners AdaMEC, CGAda & AsymAda similar performance
- Above findings are **supported by statistical significance tests**

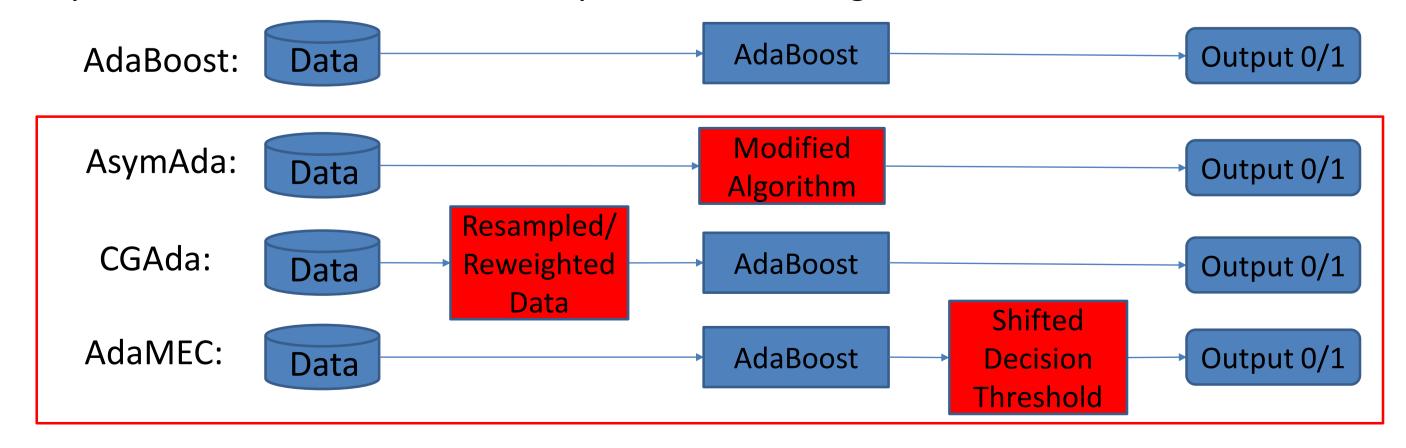
A closer look (**Brier curves**) on some datasets:



Advice for Practitioners

Based on theoretical soundness, flexibility, simplicity & results: Calibrated AdaMEC

Input: Number of weak learners *M*, data $\{(\mathbf{x}_i, y_i) | i = 1, ..., N\}$, where $y_i \in \{-1, 1\}$, cost of false negatives c_{FN} , cost of false positives c_{FP}



Once calibrated, AdaMEC, CGAda & AsymAda satisfy all properties:

Calibrated AdaMEC	 ✓ 	\checkmark	✓	 ✓
Calibrated CGAda	✓	1	\checkmark	1
Calibrated AsymAda	✓	\checkmark	\checkmark	✓

Training Phase:	Reserve part of the training	
1. Split data into training D_{tr} & calibration set D_{cal}	data for calibration.	
2. On D_{tr} :		
2.1. Train AdaBoost ensemble $F(\mathbf{x}) = \sum_{t=1}^{M} \alpha_t h_t(\mathbf{x})$	Train original AdaBoost	
3. On D_{cal} :	ensemble on training set.	
3.1. Calculate scores $s(\mathbf{x_i}) = \frac{\sum_{\tau:h_\tau(\mathbf{x_i})=1} \alpha_t}{\sum_{\tau=1}^t \alpha_t} \in [0,1], \forall \mathbf{x_i} \in D_{cal}$		
3.2. Calculate the number of positives N_+ and negatives N in D_{cal}	Train sigmoid parameters	
3.3. Find A, B s. t. $\sum_{i \in D_{cal}} (\hat{p}(y=1 \mathbf{x_i}) - y'_i)^2$ is minimized,	on calibration set.	
where $\hat{p}(y=1 \mathbf{x}) = \frac{1}{1+e^{As(\mathbf{x})+B}}$ and $y'_i = \begin{cases} \frac{N_i+1}{N_i+2}, & \text{if } y_i = 1\\ \frac{1}{N_i+2}, & \text{if } y_i = -1 \end{cases}$		
$\left(\frac{1}{N_{-}+2}, \text{if } y_i = -1\right)$	Obtain a score for	
Prediction Phase:	the test example.	
4. On new example x:	the test example.	
4.1. Calculate <i>non-prior-weighted</i> score $s(\mathbf{x}) = \frac{\sum_{\tau:h_{\tau}(\mathbf{x})=1} \alpha_t}{\sum_{\tau=1}^t \alpha_t} \in [0, 1]$	Calibrate score.	
4.2. Obtain <i>non-prior-weighted</i> probability estimate $\hat{p}(y=1 \mathbf{x}) = \frac{1}{1+e^{As(\mathbf{x})+B}}$		
4.3. Predict class $H(\mathbf{x}) = sign\left[\hat{p}(y=1 \mathbf{x}) > \frac{c_{FP}}{c_{FP}+c_{FN}}\right]$	Use shifted decision threshold for predictions.	

Acknowledgements: NN & GB were supported by the EPSRC grants [EP/I028099/1 & EP/L000725/1], MK & PF were supported by the EPSRC grant [EP/K018728/1].

Implementation in Matlab available online at: http://www.cs.man.ac.uk/~gbrown/software/