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Basically, no.
We analyse 20 years of literature, with the axioms of 4 distinct frameworks:

From 15+ boosting variants over 20 years:
only 3 are consistent with all axioms... and even then, only if we calibrate their outputs...
Final recommendation — use the ORIGINAL (Freund & Schapire 1997) and calibrate it.

Now... read on...

A Unified Perspective Calibration

The mapping of scores to empirical probabilities exhibits a sigmoid distortion
Note: * Platt scaling (logistic calibration) to correct — need separate training & calibration sets
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Results

Experiments on 18 datasets, across 21 degrees of cost imbalance
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Based on theoretical soundness, flexibility, simplicity & results: Calibrated AdaMEC

Input: Number of weak learners M, data {(x;,y;)|i=1,...,N}, where y; € {—1,1},
cost of false negatives cgy, cost of false positives cgp

All boosting algorithms produce uncalibrated probability estimates (scores)
Only |3 variants|satisfy all other properties — all approximate the same model in different
ways, each introduces cost-sensitivity at a different stage:

Training Phase: Reserve part of the training
AdaBoost: 1. Split data into training D;, & calibration set D data for calibration.
2. On Dy,
AsymAda - - : (%i]l.DTra-in AdaBoost ensemble F(x) = L1 o/ (x) Train original AdaBoost
' cal - 5 ensemble on training set.
3.1. Calculate scores s(xj) = T?"”; € 10,1],Vx; € D¢y
=1 "M
CGAda: 3.2. Calculate the number of positives N, and negatives N_ in D Train sigmoid parameters
3.3.Find A,Bs. t. Yiep  (P(y = 1]x) — y:)? is minimized, on calibration set.
AdaMEC: Ml ify =1
d ' where p(y = 1]x) = 1_|_€A1(x)+8 and y; = N+1+2’ e
N2 yi=-—1 .
Prediction Ph Obtain a score for
rediction Phase:
. . e the test example.
Once calibrated, AdaMEC, CGAda & AsymAda satisfy all properties: 4. On new example x: P
ch hrc =104
Calibrated AdaMEC v/ v v v 4.1. Caleulate non-prior-weighted score s(x) = =3~ laf € [0,1] Calibrate score.
Calibrated CGAda / V4 V4 V4 4.2. Obtain non-prior-weighted probability estimate p(y = 1|x) = = EA}Y(X) —
Calibrated AsymAda v v v v 4.3. Predict class H(x) = sign [ﬁ(y = 1|x) > %] Use shifted deC|5|en |
FPTCEN threshold for predictions.
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Implementation in Matlab available online at: http://www.cs.man.ac.uk/~gbrown/software/



