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Causal Models from Observational Data
• Identifying causal relationships important in biology, medicine & pharmaceutics — and many other fields


• To do so, ideally, we perform randomized controlled trials (RCTs)


• Often impossible for practical / ethical reasons  must use observational data 

• Can we learn causal directionality from observational data?


• No, if we just test for statistical independence (most statistical / machine learning methods) 
Multiple causal structures can satisfy same set of statistical independences —  e.g. given r.v.’s  & , : 

• Yes, if extra assumptions are made (this work)
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Complexity & Causal Directionality
• Question: Given r.v.’s  & , such that ; Can we tell if  or ?


• Central Idea — based on Occam’s Razor:  should be ‘simpler’ than 


• Application: 
        1. Train 2 models: one using  as feature to predict target  & one using  as feature to predict target  
        2. Measure the ‘complexity’ of the 2 models 
        3. Predict causal direction as the one used in the model with lowest complexity


• Measures of complexity: 
Several can be used — e.g. if models are decision trees of unbounded depth, can use:


• Tree Depth (‘simpler’ = tree with smaller depth)


• Residual Entropy (‘simpler’ = model resulting in highest decrease in entropy of target variable)


• Interpolation Hardness (‘simpler’ = model exhibiting best fit)
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Results

• All code is available at: https://github.com/nnikolaou/CausalDirectionality
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Discrete Continuous

Criterion JTD JRE JIH JTD JRE JIH

Accuracy 0.988 0.974 0.986 0.583 0.976 0.990
Accuracy excl. Abstaining 0.995 0.986 0.998 0.665 0.978 0.997

Average L(Causal) 9.252 0.214 0.135 12.871 0.024 427.146
Average L(Anti-causal) 37.417 0.819 0.882 14.314 0.113 920.909

Table 1: Results of criteria on discrete & continuous X & Y , under additive noise,
uniform UX & UY (R = 20 for discrete). L(Causal) & L(Anti-causal) is the value of
each complexity measure for the model respecting the causal directionality and for the
model that doesn’t, respectively. JRE is normalized by target r.v.’s entropy.

Fig. 1: Scores of each criterion under additive noise and uniform UX & UY (with R = 20
for discrete). [TOP] Discrete r.v.’s [BOTTOM] Continuous r.v.’s [LEFT] Tree Depth
(JTD). [MIDDLE] Residual Entropy (JRE). [RIGHT] Interpolation Hardness (JIH).
Histogram is color coded by true causal direction. Shaded regions show predicted causal
direction under the criterion, dashed line its threshold. JRE is normalized by target
r.v.’s entropy. Scores binned to 50 equal width bins.

5 Conclusion & Future Work

We demonstrated that inferring causal direction from observational data is possi-
ble, if we make the assumption that predicting the e↵ect using the cause should
be simpler than the other way round. We used decision trees to compare the
complexity of modelling X using Y vs. Y using X. The resulting criteria we pro-
posed address complexity via the trees’ structure, the entropy of their outputs
or the quality of their fit. They are fast, simple to implement and capable of
handling both discrete and continuous variables. They were found to be highly
accurate on a broad class of underlying causal mechanisms and noise types.

A more detailed theoretical analysis and unified treatment of the criteria
presented is left for an extended version of this work. So is its application to
scenarios involving > 2 variables, mixed (discrete & continuous) r.v.’s, a richer
set of underlying causal mechanisms and applications to real world data.
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Results of criteria under additive noise & uniformly distributed r.v.’s  
Avg. accuracy of using each measure to predict causal direction (with & w/o abstaining) 

& avg. value of complexity measure for model respecting causal direction and model that doesn’t

Notes:  
         Results obtained on artificial data; for full details on underlying true causal model, please consult the paper 
         Similar results for discrete & continuous r.v.’s (but depth poor measure for continuous) 
                                       gaussian, uniform or mixed r.v.’s 
                                       additive or multiplicative noise 
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Results of criteria under additive noise & uniformly distributed r.v.’s: 
Difference in complexity between 2 models, along with predicted & true causal direction

Discrete:

Continuous:



Thank you!


Questions?

Take home message: 
 
Can learn causal structure from observational data using fast, easy to code criteria. 
 
Central idea: constructing a model of the data that respects the causal structure 
                      should be simpler than constructing one that doesn’t. 

• All code is available at: https://github.com/nnikolaou/CausalDirectionality 


