Inferring Causal Direction from Observational Data: A Complexity Approach

¹ Department of Physics & Astronomy, University College London ² Advanced Methodology & Data Science, Novartis Pharma AG

ECML PKDD 2020 Workshop on Machine Learning for Pharma and Healthcare Applications (PharML) 2020

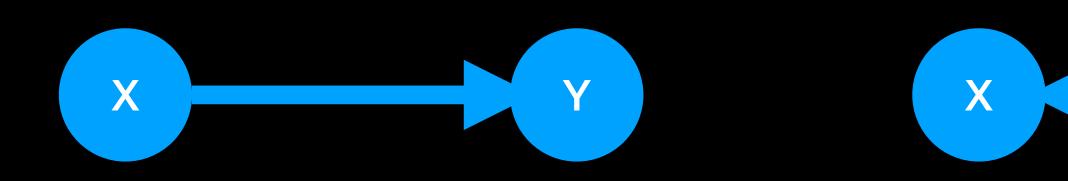
Nikolaos Nikolaou¹ & Konstantinos Sechidis²

Causal Models from Observational Data

- **Identifying causal relationships** important in biology, medicine & pharmaceutics and many other fields
 - To do so, ideally, we perform randomized controlled trials (RCTs)
 - Often impossible for **practical / ethical** reasons \implies must use **observational data** lacksquare
- Can we learn causal directionality from observational data?
 - No, if we just test for statistical independence (most statistical / machine learning methods) Multiple causal structures can satisfy same set of statistical independences — e.g. given r.v.'s X & Y, X $\not\perp$ Y:

V

Λ



• Yes, if extra assumptions are made (this work)

Complexity & Causal Directionality

- <u>Question</u>: Given r.v.'s X & Y, such that $X \not\perp Y$; Can we tell if $X \to Y$ or $Y \to X$?
- <u>Application</u>:

 - 2. Measure the '**complexity**' of the 2 models
 - 3. Predict causal direction as the one used in the model with lowest complexity
- Measures of complexity: Several can be used - e.g. if models are decision trees of unbounded depth, can use:
 - Tree Depth ('simpler' = tree with smaller depth)

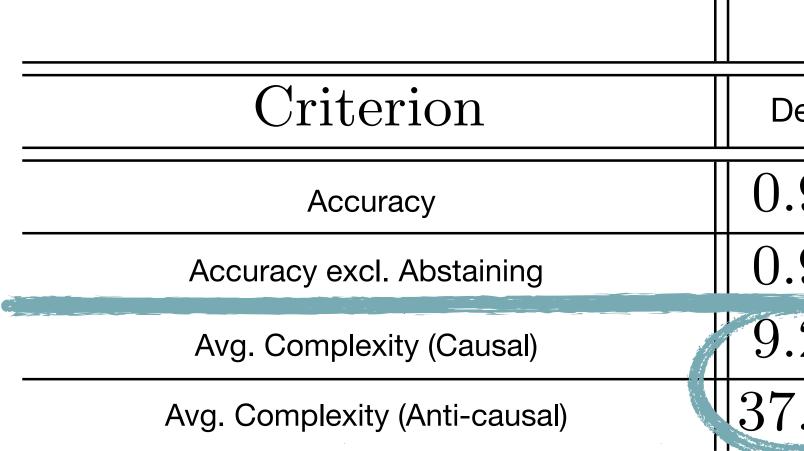
 - Interpolation Hardness ('simpler' = model exhibiting best fit)

• <u>Central Idea</u> — based on Occam's Razor: $Model_{Cause \to Effect}$ should be 'simpler' than $Model_{Effect \to Cause}$

1. Train 2 models: one using X as feature to predict target Y & one using Y as feature to predict target X

• Residual Entropy ('simpler' = model resulting in highest decrease in entropy of target variable)

Results



Notes:

Results obtained on artificial data; for full details on underlying true causal model, please consult the paper Similar results for discrete & continuous r.v.'s (but depth poor measure for continuous) gaussian, uniform or mixed r.v.'s additive or multiplicative noise

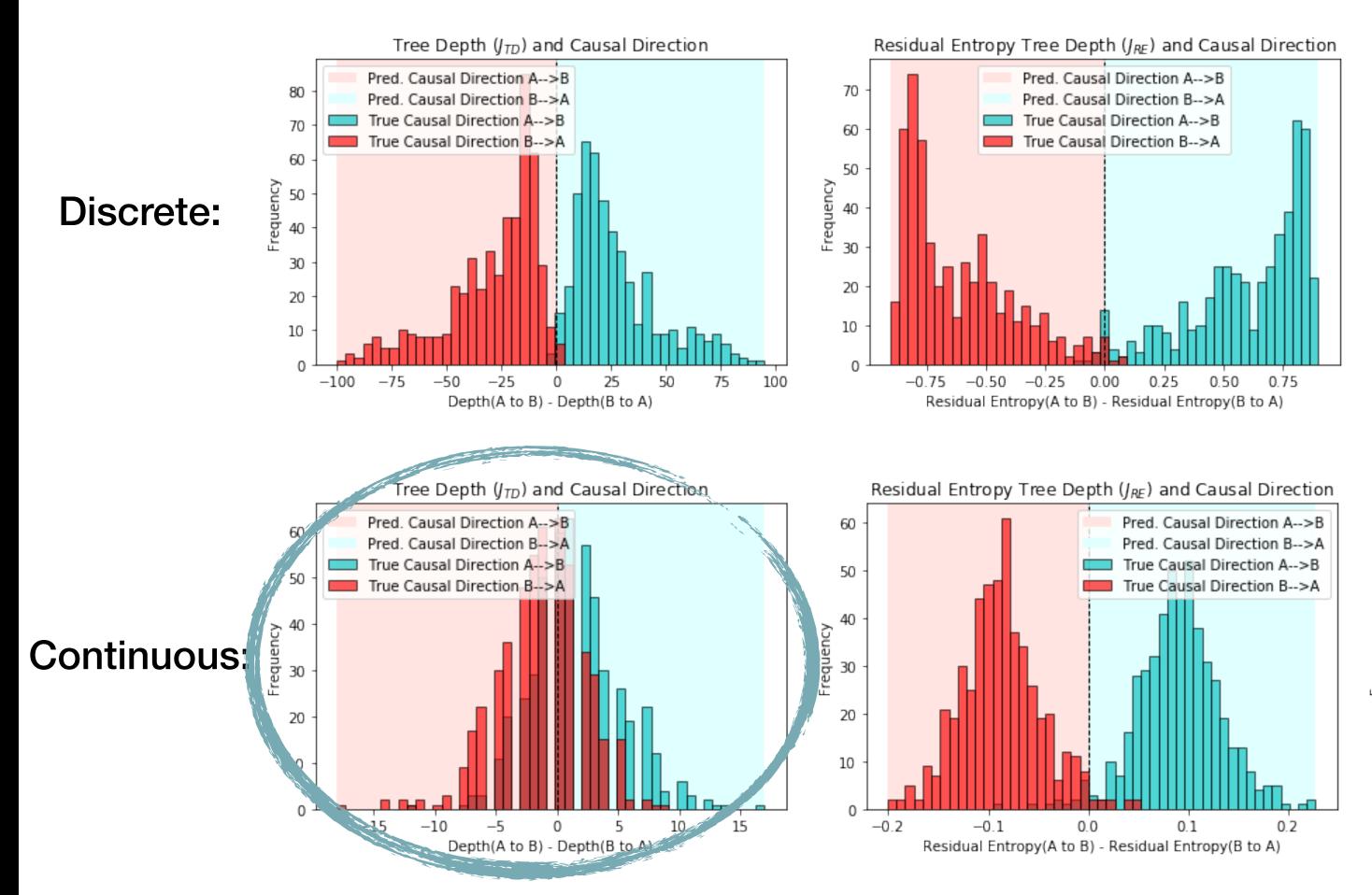
All code is available at: https://github.com/nnikolaou/CausalDirectionality

Results of criteria under additive noise & uniformly distributed r.v.'s Avg. accuracy of using each measure to predict causal direction (with & w/o abstaining) & avg. value of complexity measure for model respecting causal direction and model that doesn't

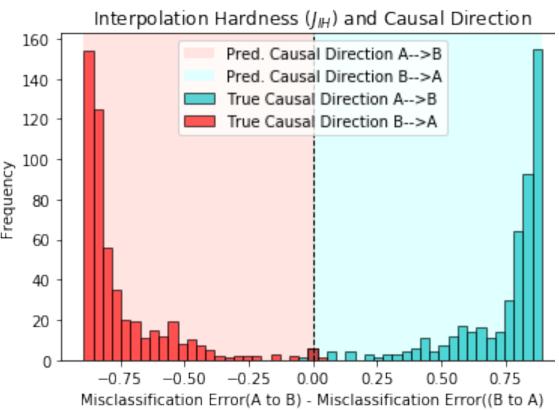
Discrete			Continuous			
epth	Entropy	Fitting	Depth	Entropy	Fitting	
.988	0.974	0.986	0.583	0.976	0.990	
.995	0.986	0.998	0.665	0.978	0.997	
.252	0.214	0.135	12.871	0.024	427.146	
7.417	0.819	0.882	14.314	0.113	920.909	

Results

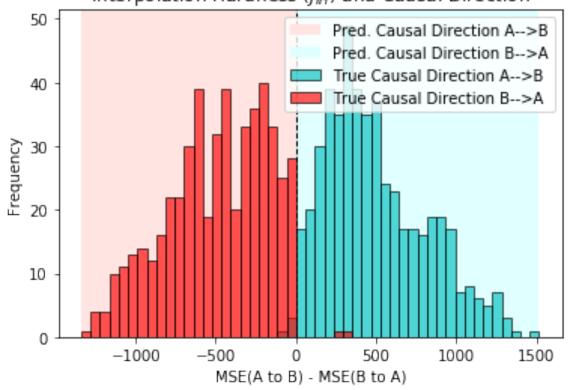
Results of criteria under additive noise & uniformly distributed r.v.'s: Difference in complexity between 2 models, along with predicted & true causal direction



All code is available at: https://github.com/nnikolaou/CausalDirectionality



Interpolation Hardness (J_{IH}) and Causal Direction



Take home message:

Can learn causal structure from observational data using fast, easy to code criteria.

Central idea: constructing a model of the data that respects the causal structure should be **simpler** than constructing one that doesn't.

Thank you!

Questions?

All code is available at: https://github.com/nnikolaou/CausalDirectionality

